These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 4627920

  • 1. Evidence for specific inhibition of translocation of aminoacyl-transfer ribonucleic acid by the pretreatment of ribosomes of Bacillus subtilis with p-chloromercuribenzoate.
    Ranu RS, Kaji A.
    J Bacteriol; 1972 Oct; 112(1):188-94. PubMed ID: 4627920
    [Abstract] [Full Text] [Related]

  • 2. Effect of sulfhydryl reagents on the ribosomes of Bacillus subtilis.
    Ranu RS, Kaji A.
    J Bacteriol; 1971 Jul; 107(1):53-60. PubMed ID: 4998249
    [Abstract] [Full Text] [Related]

  • 3. Binding of synthetic peptidyl-tRNA to the ribosomes and enzymatic synthesis of the polypeptide chain.
    Semenkov YP, Kirillov SV, Makhno VI, Shvartsman AL, Bresler SE.
    Mol Biol; 1971 Jul; 5(5):587-94. PubMed ID: 4949527
    [No Abstract] [Full Text] [Related]

  • 4. Study of the mechanism of translocation in ribosomes. 1. Polyphenylalanine synthesis in Escherichia coli ribosomes without participation of guanosine-5'-triphosphate and protein translation factors.
    Gavrilova LP, Smolyaninov VV.
    Mol Biol; 1971 Jul; 5(6):710-7. PubMed ID: 4949554
    [No Abstract] [Full Text] [Related]

  • 5. Protein synthesis in Bacillus subtilis: differential effect of potassium ions on in vitro peptide chain initiation and elongation.
    Sala F, Bazzicalupo M, Parisi B.
    J Bacteriol; 1974 Sep; 119(3):821-9. PubMed ID: 4212281
    [Abstract] [Full Text] [Related]

  • 6. The effect of guanylyl-5'-methylene diphosphonate on binding of aminoacyl-transfer ribonucleic acid to ribosomes.
    Shorey RL, Ravel JM, Shive W.
    Arch Biochem Biophys; 1971 Sep; 146(1):110-7. PubMed ID: 4947260
    [No Abstract] [Full Text] [Related]

  • 7. Translocation in Bacillus subtilis: characterization of elongation factor G by peptidyl-[3H]puromycin synthesis.
    Aharonowitz Y, Ron EZ.
    J Bacteriol; 1976 Mar; 125(3):1074-9. PubMed ID: 815236
    [Abstract] [Full Text] [Related]

  • 8. Polyphenylalanine synthesis and binding of phenylalanyl transfer ribonucleic acid by ribosomes from muscle of normal and diabetic rats.
    Castles JJ, Rolleston FS, Wool IG.
    J Biol Chem; 1971 Mar 25; 246(6):1799-805. PubMed ID: 5547705
    [No Abstract] [Full Text] [Related]

  • 9. Altered ribosomes in spiramycin-resistant mutants of Bacillus subtilis.
    Ahmed A.
    Biochim Biophys Acta; 1968 Aug 23; 166(1):218-28. PubMed ID: 4972350
    [No Abstract] [Full Text] [Related]

  • 10. Peptide chain initiation in homologous and heterologous systems from mitochondria and bacteria.
    Sala F, Küntzel H.
    Eur J Biochem; 1970 Aug 23; 15(2):280-6. PubMed ID: 4993755
    [No Abstract] [Full Text] [Related]

  • 11. Peptide chain elongation. Role of the S 1 factor in the pathway from S 3 -guanosine diphosphate complex to aminoacyl transfer ribonucleic acid-S 3 -guanosine triphosphate complex.
    Beaud G, Lengyel P.
    Biochemistry; 1971 Dec 21; 10(26):4899-906. PubMed ID: 4944063
    [No Abstract] [Full Text] [Related]

  • 12. Chain initiation during polypeptide synthesis in cell-free bacterial systems programmed with a plant viral messenger. The formation of N-acetylphenylalanylisoleucyl-tRNA on the messenger-ribosome complex.
    Verhoef NJ, Lupker JH, Cornelissen MC, Bosch L.
    Virology; 1971 Jul 21; 45(1):85-90. PubMed ID: 4939455
    [No Abstract] [Full Text] [Related]

  • 13. Evidence that fusidic acid inhibits the binding of aminoacyl-tRNA to the donor as well as the acceptor site of the ribosomes.
    Otaka T, Kaji A.
    Eur J Biochem; 1973 Sep 21; 38(1):46-53. PubMed ID: 4590123
    [No Abstract] [Full Text] [Related]

  • 14. Inhibition by aminoacyl transfer ribonucleic acid of elongation factor G-dependent binding of guanosine nucleotide to ribosomes.
    Modolell J, Vazquez D.
    J Biol Chem; 1973 Jan 25; 248(2):488-93. PubMed ID: 4567784
    [No Abstract] [Full Text] [Related]

  • 15. Factor-free ("non-enzymic") and factor-dependent systems of translation of polyuridylic acid by Escherichia coli ribosomes.
    Gavrilova LP, Kostiashkina OE, Koteliansky VE, Rutkevitch NM, Spirin AS.
    J Mol Biol; 1976 Mar 15; 101(4):537-52. PubMed ID: 772221
    [No Abstract] [Full Text] [Related]

  • 16. The effect of calcium on in vitro polyphenylalanine synthesis by rice ribosomes.
    McCarthy WJ, App AA, Crotty WJ.
    Biochim Biophys Acta; 1971 Aug 12; 246(1):132-40. PubMed ID: 5123564
    [No Abstract] [Full Text] [Related]

  • 17. Demonstration of a guanosine triphosphate-dependent enzymatic binding of aminoacyl-ribonucleic acid to Escherichia coli ribosomes.
    Ravel JM.
    Proc Natl Acad Sci U S A; 1967 Jun 12; 57(6):1811-6. PubMed ID: 5340636
    [No Abstract] [Full Text] [Related]

  • 18. Analysis of ribosomes from viomycin-sensitive and -resistant strains of Mycobacterium smegmatis.
    Yamada T, Masuda K, Shoji K, Hori M.
    J Bacteriol; 1972 Oct 12; 112(1):1-6. PubMed ID: 4342812
    [Abstract] [Full Text] [Related]

  • 19. Role of elongation factors and the effect of aurintricarboxylic acid on the synthesis of polyphenylalanine.
    Smith KE, Hirsch CA, Henshaw EC.
    J Biol Chem; 1973 Jan 10; 248(1):122-30. PubMed ID: 4692826
    [No Abstract] [Full Text] [Related]

  • 20. Requirements for the initiation of polyphenylalanine synthesis by recombined ribosomal subunits from yeast.
    Pranger MH, Roos MH, Van der Zeijst BA, Bloemers HP.
    Mol Biol Rep; 1974 Mar 10; 1(6):321-7. PubMed ID: 4372524
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.