These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Ketogenesis in isolated rat liver mitochondria. II. Factors affecting the rate of beta-oxidation. Lopes-Cardozo M, van den Bergh SG. Biochim Biophys Acta; 1974 Jul 25; 357(1):43-52. PubMed ID: 4414031 [No Abstract] [Full Text] [Related]
7. Ketogenesis in isolated rat liver mitochondria. III. Relationship with the rate of beta-oxidation. Lopes-Cardozo M, van den Bergh SG. Biochim Biophys Acta; 1974 Jul 25; 357(1):53-62. PubMed ID: 4414032 [No Abstract] [Full Text] [Related]
8. Factors affecting the production of ketone bodies during fatty acid oxidation by isolated rat liver mitochondria. Hoffmann H, van den Bergh SG. Biochem J; 1970 Feb 25; 116(4):33P-34P. PubMed ID: 5435473 [No Abstract] [Full Text] [Related]
10. Factors controlling ketogenesis by rat liver mitochondria. Lee LP, Fritz IB. Can J Biochem; 1972 Feb 25; 50(2):120-7. PubMed ID: 5014536 [No Abstract] [Full Text] [Related]
11. On rate-controlling factors of long chain fatty acid oxidation. Pande SV. J Biol Chem; 1971 Sep 10; 246(17):5384-90. PubMed ID: 5094674 [No Abstract] [Full Text] [Related]
12. Effect of acetaldehyde on fatty acid oxidation and ketogenesis by hepatic mitochondria. Cederbaum AI, Lieber CS, Rubin E. Arch Biochem Biophys; 1975 Jul 10; 169(1):29-41. PubMed ID: 1164023 [No Abstract] [Full Text] [Related]
14. Inhibition of fatty acid oxidation by 2-bromooctanoate. Including effects of bromooctanoate on ketogenesis and gluconeogenesis. Raaka BM, Lowenstein JM. J Biol Chem; 1979 May 10; 254(9):3303-10. PubMed ID: 429351 [No Abstract] [Full Text] [Related]
15. Differential effects of acetate on palmitate and octanoate oxidation: segregation of acetyl CoA pools. Cederbaum AI, Rubin E. Arch Biochem Biophys; 1975 Feb 10; 166(2):618-28. PubMed ID: 1119812 [No Abstract] [Full Text] [Related]
17. The effects of ketone bodies, bicarbonate, and calcium on hepatic mitochondrial ketogenesis. Roeder LM, Tildon JT, Reed WD, Ozand PT. Arch Biochem Biophys; 1982 Sep 14; 217(2):460-7. PubMed ID: 7138017 [No Abstract] [Full Text] [Related]
18. On the mechanism of ketogenesis and its control. I. On a possible role of acetoacetyl-CoA thiolase in the control of ketone body production. Huth W, Dierich C, von Oeynhausen V, Seubert W. Hoppe Seylers Z Physiol Chem; 1973 Jun 14; 354(6):635-49. PubMed ID: 4803501 [No Abstract] [Full Text] [Related]
19. Activation of mitochondrial fatty acid oxidation by calcium. Conversion to the energized state. Otto DA, Ontko JA. J Biol Chem; 1978 Feb 10; 253(3):789-99. PubMed ID: 23381 [No Abstract] [Full Text] [Related]
20. The role of acylcarnitine esters and carnitine palmityltransferase in the transport of fatty acyl groups across mitochondrial membranes. Fritz IB, Marquis NR. Proc Natl Acad Sci U S A; 1965 Oct 10; 54(4):1226-33. PubMed ID: 5219827 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]