These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
125 related items for PubMed ID: 4656881
1. Ultrastructural evidence of positive extension in mouse skeletal muscle stretched in rigor mortis. Herlihy E, Hegarty PV, Heffron JJ. Life Sci II; 1972 Aug 08; 11(15):743-51. PubMed ID: 4656881 [No Abstract] [Full Text] [Related]
2. Structure of insect fibrillar flight muscle in the presence and absence of ATP. Miller A, Tregear RT. J Mol Biol; 1972 Sep 14; 70(1):85-104. PubMed ID: 5073353 [No Abstract] [Full Text] [Related]
4. Development of rigor mortis is not affected by muscle volume. Kobayashi M, Ikegaya H, Takase I, Hatanaka K, Sakurada K, Iwase H. Forensic Sci Int; 2001 Apr 01; 117(3):213-9. PubMed ID: 11248452 [Abstract] [Full Text] [Related]
5. [Physiological and morphological studies of the mechanism and development of rigor mortis (author's transl)]. Krause D, Zett L. Z Rechtsmed; 1973 Jun 29; 72(4):245-54. PubMed ID: 4787795 [No Abstract] [Full Text] [Related]
6. Ultrastructural differences in mitochondria of skeletal muscle in the prerigor and rigor states. Hegarty PV, Dahlin KJ, Benson ES. Experientia; 1978 Aug 15; 34(8):1070-1. PubMed ID: 29769 [Abstract] [Full Text] [Related]
7. [Micromorphology of rigor mortis in human skeletal muscle]. Peschel O, Bratzke H, Eisenmenger W, Welsch U. Beitr Gerichtl Med; 1989 Aug 15; 47():31-42. PubMed ID: 2818494 [Abstract] [Full Text] [Related]
8. Ultrastructural and light microscope studies on rigor-extended sarcomeres in avian and porcine skeletal muscles. Hegarty PV, Dahlin KJ, Benson ES, Allen CE. J Anat; 1973 Jul 15; 115(Pt 2):203-19. PubMed ID: 4756247 [No Abstract] [Full Text] [Related]
9. Differential scanning calorimetric studies of muscle and its constituent proteins. Wright DJ, Leach IB, Wilding P. J Sci Food Agric; 1977 Jun 15; 28(6):557-64. PubMed ID: 881789 [No Abstract] [Full Text] [Related]
10. X-ray evidence for radial cross-bridge movement and for the sliding filament model in actively contracting skeletal muscle. Haselgrove JC, Huxley HE. J Mol Biol; 1973 Jul 15; 77(4):549-68. PubMed ID: 4541885 [No Abstract] [Full Text] [Related]
11. General model of myosin filament structure. II. Myosin filaments and cross-bridge interactions in vertebrate striated and insect flight muscles. Squire JM. J Mol Biol; 1972 Dec 14; 72(1):125-38. PubMed ID: 4567398 [No Abstract] [Full Text] [Related]
12. Molecular phenomena in the contracting muscle. Krause M. Acta Physiol Pol; 1972 Dec 14; 5():925-40. PubMed ID: 4644727 [No Abstract] [Full Text] [Related]
13. X-ray diffraction patterns from mammalian heart muscle. Matsubara I, Millman BM. J Mol Biol; 1974 Feb 05; 82(4):527-36. PubMed ID: 4817795 [No Abstract] [Full Text] [Related]
14. The shortening of rabbit muscles during rigor mortis; its relation to the breakdown of adenosine triphosphate and creatine phosphate and to muscular contraction. BENDALL JR. J Physiol; 1951 Jun 05; 114(1-2):71-88. PubMed ID: 14861784 [No Abstract] [Full Text] [Related]
15. Striation patterns of ox muscle in rigor mortis. LOCKER RH. J Biophys Biochem Cytol; 1959 Dec 05; 6(3):419-22. PubMed ID: 14417790 [Abstract] [Full Text] [Related]
16. Onset of rigor mortis is earlier in red muscle than in white muscle. Kobayashi M, Takatori T, Nakajima M, Sakurada K, Hatanaka K, Ikegaya H, Matsuda Y, Iwase H. Int J Legal Med; 2000 Dec 05; 113(4):240-3. PubMed ID: 10929241 [Abstract] [Full Text] [Related]