These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
147 related items for PubMed ID: 4672031
1. Tracer kinetic analysis of phosphate incorporation of erythrocytes in vitro. II. Model analysis of the system with the ATP pool not in steady state. Latzkovits L, Fajszi C, Szentistványi I. Acta Biochim Biophys Acad Sci Hung; 1972; 7(4):307-14. PubMed ID: 4672031 [No Abstract] [Full Text] [Related]
2. Tracer kinetic analysis of phosphate incorporation into erythrocytes in vitro. I. A simple model for simultaneous investigation of phosphate transport and exchange in erythrocytes. Latzkovits L, Szentistványi I, Fajszi C. Acta Biochim Biophys Acad Sci Hung; 1972; 7(1):55-66. PubMed ID: 5084290 [No Abstract] [Full Text] [Related]
3. Effect of chemical mediators on the K+-efflux, Ca2+-uptake and 32P-incorporation of erythrocytes. Szász I. Acta Biochim Biophys Acad Sci Hung; 1972; 7(4):335-9. PubMed ID: 4368611 [No Abstract] [Full Text] [Related]
4. [The recording of ATP in the erythrocytes using luciferase injected into the cells]. Ataullakhanov FI, Vitvitskiĭ VM, Zhabotinskiĭ AM, Pichugin AV, Sinauridze EI. Izv Akad Nauk SSSR Biol; 1989; (6):813-21. PubMed ID: 2621278 [Abstract] [Full Text] [Related]
5. Factors influencing the preservation of red cell ATP on storage. Beutler E, Duron O. Folia Haematol Int Mag Klin Morphol Blutforsch; 1965; 83(4):509-15. PubMed ID: 4160327 [No Abstract] [Full Text] [Related]
6. Transfer of inorganic phosphate across human erythrocyte membranes. Schrier SL. J Lab Clin Med; 1970 Mar; 75(3):422-34. PubMed ID: 4313673 [No Abstract] [Full Text] [Related]
7. Changes in red blood cell membrane phosphate concentration during blood bank storage. McCue JP, Vincent JM. Transfusion; 1981 Mar; 21(1):107-12. PubMed ID: 7466899 [Abstract] [Full Text] [Related]
8. The discocyte-echinocyte transformation: comparison of normal and ATP-enriched human erythrocytes. Féo CJ, Leblond PF. Blood; 1974 Nov; 44(5):639-47. PubMed ID: 4607840 [No Abstract] [Full Text] [Related]
9. A kinetic model for the interaction of energy metabolism and osmotic states of human erythrocytes. Analysis of the stationary "in vivo" state and of time dependent variations under blood preservation conditions. Werner A, Heinrich R. Biomed Biochim Acta; 1985 Nov; 44(2):185-212. PubMed ID: 4004830 [Abstract] [Full Text] [Related]
10. Membrane phosphorylation in intact human erythrocytes. Reimann B, Klatt D, Tsamaloukas AG, Maretzki D. Acta Biol Med Ger; 1981 Nov; 40(4-5):487-93. PubMed ID: 7315094 [Abstract] [Full Text] [Related]
11. Application a three compartment tracerkinetic model for comparing the K+, Rb+ and Cs+ transport of erythrocytes. Györgyi S, Kanyár B. Acta Biochim Biophys Acad Sci Hung; 1972 Nov; 7(4):359-65. PubMed ID: 4671876 [No Abstract] [Full Text] [Related]
12. Energy metabolism in uremic red cells: relationship of red cell adenosine triphosphate concentration to extracellular phosphate. Lichtman MA, Miller DR, Weed RI. Trans Assoc Am Physicians; 1969 Nov; 82():331-43. PubMed ID: 5375156 [No Abstract] [Full Text] [Related]
14. Studies on erythrocyte glycolysis. IV. Kinetics of Pi32 incorporation into 2,3-diphosphoglycerate and ATP. Minakami S, Suzuki C, Yoshikawa H. J Biochem; 1966 Dec; 60(6):707-12. PubMed ID: 5982533 [No Abstract] [Full Text] [Related]
16. Kinetic modeling of ATP synthesis by ATP synthase and its mechanistic implications. Nath S, Jain S. Biochem Biophys Res Commun; 2000 Jun 16; 272(3):629-33. PubMed ID: 10860805 [Abstract] [Full Text] [Related]
17. Mathematical models of metabolic systems: general principles and control of glycolysis and membrane transport in erythrocytes. Heinrich R. Biomed Biochim Acta; 1985 Jun 16; 44(6):913-27. PubMed ID: 2931078 [Abstract] [Full Text] [Related]