These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
132 related items for PubMed ID: 468735
1. Bioconversion and biosynthesis of 16-membered macrolide antibiotics. XIII. Regulation of spiramycin I 3-hydroxyl acylase formation by glucose, butyrate, and cerulenin. Kitao C, Ikeda H, Hamada H, Omura S. J Antibiot (Tokyo); 1979 Jun; 32(6):593-9. PubMed ID: 468735 [Abstract] [Full Text] [Related]
2. Bioconversion and biosynthesis of 16-membered macrolide antibiotic, tylosin, using enzyme inhibitor: cerulenin. Omura S, Kitao C, Miyazawa J, Imai H, Takeshima H. J Antibiot (Tokyo); 1978 Mar; 31(3):254-6. PubMed ID: 649519 [No Abstract] [Full Text] [Related]
5. Hybrid biosynthesis of derivatives of protylonolide and M-4365 by macrolide-producing microorganisms. Sadakane N, Tanaka Y, Omura S. J Antibiot (Tokyo); 1982 Jun; 35(6):680-7. PubMed ID: 7118724 [Abstract] [Full Text] [Related]
6. Bioconversion and biosynthesis of 16-membered macrolide antibiotics. XV. Final steps in the biosynthesis of leucomycins. Kitao C, Hamada H, Ikeda H, Omura S. J Antibiot (Tokyo); 1979 Oct; 32(10):1055-7. PubMed ID: 528366 [No Abstract] [Full Text] [Related]
7. [Acylation specificity of midecamycin 3-O-acyltransferase within Streptomyces spiramyceticus F21]. Ma C, Wu L, Dai J, Zhou H, Li J, Sun X, Zhang K, Xia H, Wang Y. Sheng Wu Gong Cheng Xue Bao; 2008 Dec; 24(12):2086-92. PubMed ID: 19306580 [Abstract] [Full Text] [Related]
8. Regulation of spiramycin synthesis in Streptomyces ambofaciens: effects of glucose and inorganic phosphate. Lounès A, Lebrihi A, Benslimane C, Lefebvre G, Germain P. Appl Microbiol Biotechnol; 1996 Mar; 45(1-2):204-11. PubMed ID: 8920193 [Abstract] [Full Text] [Related]
9. Isolation and properties of spiramycin I 3-hydroxyl acylase from Streptomyces and ambofaciens. Omura S, Ikeda H, Kitao C. J Biochem; 1979 Dec; 86(6):1753-8. PubMed ID: 528537 [Abstract] [Full Text] [Related]
14. The detection of a plasmid in Streptomyces ambofaciens KA-1028 and its possible involvement in spiramycin production. Omura S, Ikeda H, Kitao C. J Antibiot (Tokyo); 1979 Oct; 32(10):1058-60. PubMed ID: 528367 [No Abstract] [Full Text] [Related]
16. Bioconversion of leucomycins and its regulation by butyrate in a producing strain. Omura S, Miyazawa J, Takeshima H, Kitao C, Atsumi K. J Antibiot (Tokyo); 1976 Oct; 29(10):1131-3. PubMed ID: 994332 [No Abstract] [Full Text] [Related]
17. Identification of two regulatory genes involved in carbomycin biosynthesis in Streptomyces thermotolerans. Zhong J, Lu Z, Dai J, He W. Arch Microbiol; 2017 Sep; 199(7):1023-1033. PubMed ID: 28389815 [Abstract] [Full Text] [Related]
19. Regulation of valine catabolism by ammonium in Streptomyces ambofaciens, producer of spiramycin. Lounès A, Lebrihi A, Benslimane C, Lefebvre G, Germain P. Can J Microbiol; 1995 Sep; 41(9):800-8. PubMed ID: 7585357 [Abstract] [Full Text] [Related]
20. Increase of the expression of midecamycin 4"-hydroxyl propionyltransferase gene (mpt) by a promoter-like fragment from the midecamycin producing strain. Gu H, Wang Y, Xu X, Wei X, Fong M. Chin J Biotechnol; 1996 Sep; 12(3):147-52. PubMed ID: 9093756 [Abstract] [Full Text] [Related] Page: [Next] [New Search]