These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
98 related items for PubMed ID: 4699562
21. Specific cleavage of C-methionyl peptide bonds in hydrogen fluoride. Lenard J, Schally AV, Hess GP. Biochem Biophys Res Commun; 1964; 14():498-502. PubMed ID: 5837772 [No Abstract] [Full Text] [Related]
22. Use of anhydrous hydrogen fluoride in peptide synthesis. II. Procedures for the syntheses of simple peptides. Sakakibara S, Kishida Y, Nishizawa R, Shimonishi Y. Bull Chem Soc Jpn; 1968 Feb; 41(2):438-41. PubMed ID: 5715520 [No Abstract] [Full Text] [Related]
23. Five-membered ring formation in unimolecular reactions of peptides: a key structural element controlling low-energy collision-induced dissociation of peptides. Schlosser A, Lehmann WD. J Mass Spectrom; 2000 Dec; 35(12):1382-90. PubMed ID: 11180628 [Abstract] [Full Text] [Related]
24. Isolation and characterization of 2-methyladenosine from Escherichia coli tRNA Glu 2 , tRNA Asp 1 , tRNA His 1 and tRNA Arg . Saneyoshi M, Oashi Z, Harada F, Nishimura S. Biochim Biophys Acta; 1972 Feb 23; 262(1):1-10. PubMed ID: 4552900 [No Abstract] [Full Text] [Related]
25. C-terminal amino acid residue loss for deprotonated peptide ions containing glutamic acid, aspartic acid, or serine residues at the C-terminus. Li Z, Yalcin T, Cassady CJ. J Mass Spectrom; 2006 Jul 23; 41(7):939-49. PubMed ID: 16810639 [Abstract] [Full Text] [Related]
26. Modification of carboxyl groups in bovine carboxypeptidase A. II. Chemical identification of a functional glutamic acid residue and other reactive groups. Pétra PH, Neurath H. Biochemistry; 1971 Aug 17; 10(17):3171-7. PubMed ID: 5165842 [No Abstract] [Full Text] [Related]
27. Use of hydrogen fluoride in Merrifield solid-phase peptide synthesis. Lenard J, Robinson AB. J Am Chem Soc; 1967 Jan 04; 89(1):181-2. PubMed ID: 6040067 [No Abstract] [Full Text] [Related]
28. Side reactions in peptide synthesis. VII. Sequence dependence in the formation of aminosuccinyl derivatives from beta-benzyl-aspartyl peptides. Bodanszky M, Kwei JZ. Int J Pept Protein Res; 1978 Aug 04; 12(2):69-74. PubMed ID: 711372 [Abstract] [Full Text] [Related]
29. Complexes of pyridoxal phosphate with amino acids, peptides, polylysine, and apotransaminase. Finseth F, Sizer IW. Biochem Biophys Res Commun; 1967 Mar 09; 26(5):625-30. PubMed ID: 6049361 [No Abstract] [Full Text] [Related]
30. Comparative studies on the primary structure of soluble and mitochondrial glutamic oxaloacetic transaminase isozymes. II. Amino acid sequence of the amino terminal fragments. Wada H, Watanabe T, Miyatake A. Biochem Biophys Res Commun; 1971 Jun 18; 43(6):1318-23. PubMed ID: 5569116 [No Abstract] [Full Text] [Related]
31. Gamma-glutamyl and D- or L-peptide linkages in mycobacillin, a cyclic peptide antibiotic. Sengupta S, Banerjee AB, Bose SK. Biochem J; 1971 Mar 18; 121(5):839-46. PubMed ID: 4398825 [Abstract] [Full Text] [Related]
32. The identification of epsilon-N-(gamma-L-glutamyl)-L-lysine cross-links in native wool keratins. Asquith RS, Otterburn MS, Buchanan JH, Cole M, Fletcher JC, Gardner KL. Biochim Biophys Acta; 1970 Nov 17; 221(2):342-8. PubMed ID: 4923219 [No Abstract] [Full Text] [Related]
33. Isolation and characterization of kappa and lambda chains of normal human gammaG-immunoglobulin. Franĕk F, Brummelová V, Skvaril F. Biochim Biophys Acta; 1968 Aug 13; 160(3):321-32. PubMed ID: 4176020 [No Abstract] [Full Text] [Related]
34. Solid-phase synthesis of selectively protected peptides for use as building units in the solid-phase synthesis of large molecules. Barton MA, Lemieux RU, Savoie JY. J Am Chem Soc; 1973 Jul 11; 95(14):4501-6. PubMed ID: 4730661 [No Abstract] [Full Text] [Related]
35. Synthesis of stable C-linked ferrocenyl amino acids and their use in solution-phase peptide synthesis. Philip AT, Chacko S, Ramapanicker R. J Pept Sci; 2015 Dec 11; 21(12):887-92. PubMed ID: 26477332 [Abstract] [Full Text] [Related]
36. Probabilities of formation of -helices in poly-L-glutamic acid and in poly-L-aspartic acid. Lewin S. J Theor Biol; 1972 Jul 11; 36(1):1-7. PubMed ID: 5070902 [No Abstract] [Full Text] [Related]
37. Insulin peptides. 18. The synthesis of a partially protected heneicosapeptide containing the C-terminal sequence of the B chain of insulin. Katsoyannis PG, Tilak M, Fukuda K. J Am Chem Soc; 1971 Nov 11; 93(22):5857-61. PubMed ID: 5111834 [No Abstract] [Full Text] [Related]
38. Conformational studies on poly-L-glutamic acid and copolymers of L-glutamic acid and L-phenylalanine. Sage HJ, Fasman GD. Biochemistry; 1966 Jan 11; 5(1):286-96. PubMed ID: 5938944 [No Abstract] [Full Text] [Related]
39. High glutamic and aspartic region in nonhistone protein HMG(1+2) unwinds DNA double helical structure. Yoshida M. J Biochem; 1987 Jan 11; 101(1):175-80. PubMed ID: 3571199 [Abstract] [Full Text] [Related]
40. Chromatography of polypeptides and proteins on hydroxyapatite columns. Bernardi G, Kawasaki T. Biochim Biophys Acta; 1968 Aug 13; 160(3):301-10. PubMed ID: 5680264 [No Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]