These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


107 related items for PubMed ID: 4713246

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Efflux of 22Na and 86Rb from the crystalline lens.
    Paterson CA.
    Exp Eye Res; 1970 Oct; 10(2):331-8. PubMed ID: 5484774
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Evidence for two sodium pumps in the crystalline lens of the rabbit eye.
    Neville MC, Paterson CA, Hamilton PM.
    Exp Eye Res; 1978 Dec; 27(6):637-48. PubMed ID: 216566
    [No Abstract] [Full Text] [Related]

  • 5. Studies on the crystalline lens. XXIII. Electrogenic potential and cation transport.
    Hightower KR, Kinsey VE.
    Exp Eye Res; 1977 Jun; 24(6):587-93. PubMed ID: 872902
    [No Abstract] [Full Text] [Related]

  • 6. Ion transport in damaged lenses and by isolated lens epithelium.
    Riley MV.
    Exp Eye Res; 1970 Jan; 9(1):28-37. PubMed ID: 5417912
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Studies on intraocular transport of taurine. II. Accumulation in the rabbit lens.
    Reddy VN.
    Invest Ophthalmol; 1970 Mar; 9(3):206-19. PubMed ID: 5416397
    [No Abstract] [Full Text] [Related]

  • 9. 'alpha'Aminoisobutyric acid transport in the amphibian crystalline lens.
    McGahan MC, Bentley PJ.
    Exp Eye Res; 1982 Jan; 34(1):49-56. PubMed ID: 6799312
    [No Abstract] [Full Text] [Related]

  • 10. The influence of calcium-free solutions upon permeability characteristics of the rabbit lens.
    Delamere NA, Paterson CA.
    Exp Eye Res; 1979 Jan; 28(1):45-53. PubMed ID: 446552
    [No Abstract] [Full Text] [Related]

  • 11. Diffusion of sodium in extracellular space of the crystalline lens.
    Paterson CA, Maurice DM.
    Am J Physiol; 1971 Jan; 220(1):256-63. PubMed ID: 5538660
    [No Abstract] [Full Text] [Related]

  • 12. Relative permeabilities of the lens membranes to sodium and potassium.
    Duncan G.
    Exp Eye Res; 1969 Jul; 8(3):315-25. PubMed ID: 5801405
    [No Abstract] [Full Text] [Related]

  • 13. Lysine transport and protein incorporation by the lens.
    Cotlier E.
    Biochim Biophys Acta; 1971 Sep 14; 241(3):798-806. PubMed ID: 5160734
    [No Abstract] [Full Text] [Related]

  • 14. Reversal of triparanol-induced cataracts in the rat. II. Exchange of 22 Na, 42 K, and 86 Rb in cataractous and clearing lenses.
    Harris JE, Gruber L.
    Invest Ophthalmol; 1972 Jul 14; 11(7):608-16. PubMed ID: 5046560
    [No Abstract] [Full Text] [Related]

  • 15. Contribution of an electrogenic pump to the electrical characteristics of frog lens membranes.
    Ducan G, Delamere NA, Paterson CA, Neville MC.
    Exp Eye Res; 1980 Jan 14; 30(1):105-7. PubMed ID: 7363962
    [No Abstract] [Full Text] [Related]

  • 16. Studies on the crystalline lens. XXV. An analysis of the dependence of the components of the potential on sodium-potassium fluxes based on the pump-leak model.
    Kinsey VE, Hightower KR.
    Exp Eye Res; 1978 Feb 14; 26(2):157-64. PubMed ID: 631232
    [No Abstract] [Full Text] [Related]

  • 17. Movement of sodium and chloride across amphibian lens membranes.
    Duncan G.
    Exp Eye Res; 1970 Jul 14; 10(1):117-28. PubMed ID: 5456769
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Active and passive rubidium influx in normal human lenses and in senile cataracts.
    Maraini G, Pasino M.
    Exp Eye Res; 1983 Apr 14; 36(4):543-49. PubMed ID: 6852132
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.