These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
235 related items for PubMed ID: 4719137
41. Insulin-stimulated plasma membranes from rat adipocytes: their physiological and physicochemical properties. Avruch J, Carter JR, Martin DB. Biochim Biophys Acta; 1972 Oct 23; 288(1):27-42. PubMed ID: 4344897 [No Abstract] [Full Text] [Related]
42. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. Clausen T. Biochim Biophys Acta; 1968 Jan 03; 150(1):66-72. PubMed ID: 5642635 [No Abstract] [Full Text] [Related]
43. Abnormal cation transport in uremia. Mechanisms in adipocytes and skeletal muscle from uremic rats. Druml W, Kelly RA, May RC, Mitch WE. J Clin Invest; 1988 Apr 03; 81(4):1197-203. PubMed ID: 2832446 [Abstract] [Full Text] [Related]
44. Cation movements in the high sodium erythrocyte of the cat. Sha'afi RI, Lieb WR. J Gen Physiol; 1967 Jul 03; 50(6):1751-64. PubMed ID: 6034766 [Abstract] [Full Text] [Related]
45. Action of insulin on isolated fat cells. Gliemann J. Dan Med Bull; 1969 May 03; 16():Suppl 4:1-42. PubMed ID: 4913074 [No Abstract] [Full Text] [Related]
46. Lipolysis and potassium accumulation in isolated fat cells. Effect of insulin and lipolytic agents. Touabi M, Jeanrenaud B. Biochim Biophys Acta; 1970 May 05; 202(3):486-95. PubMed ID: 4315137 [No Abstract] [Full Text] [Related]
47. Inhibition of cation cotransport by cholesterol enrichment of human red cell membranes. Wiley JS, Cooper RA. Biochim Biophys Acta; 1975 Dec 16; 413(3):425-31. PubMed ID: 1191697 [Abstract] [Full Text] [Related]
48. The interaction of monovalent cations with the sodium pump of low-potassium goat erythrocytes. Cavieres JD, Ellory JC. J Physiol; 1977 Sep 16; 271(1):289-318. PubMed ID: 144181 [Abstract] [Full Text] [Related]
49. Regulation of sodium and potassium in muscle fibers of the ventricle of Unio, a fresh-water lamellibranch. Rutherford JG, Dunham PB. Comp Biochem Physiol; 1970 Nov 15; 37(2):181-91. PubMed ID: 5484078 [No Abstract] [Full Text] [Related]
50. Thallium inhibition of ouabain-sensitive sodium transport and of the (Na+ plus K+)-ATPase in human erythrocytes. Skulskii IA, Manninen V, Järnefelt J. Biochim Biophys Acta; 1975 Jul 18; 394(4):569-76. PubMed ID: 125106 [Abstract] [Full Text] [Related]
51. Insulin binding to plasma membranes. Robinson CA, Boshell BR, Reddy WJ. Biochim Biophys Acta; 1972 Dec 01; 290(1):84-91. PubMed ID: 4640776 [No Abstract] [Full Text] [Related]
52. Effects of some monovalent anions on fluxes of Na and K, and on glucose metabolism of ouabain treated human red cells. Funder J, Wieth JO. Acta Physiol Scand; 1967 Dec 01; 71(2):168-85. PubMed ID: 5584526 [No Abstract] [Full Text] [Related]
53. Stoichiometric relationship between Na(+) ions transported and glucose consumed in human erythrocytes: Bayesian analysis of (23)Na and (13)C NMR time course data. Puckeridge M, Chapman BE, Conigrave AD, Grieve SM, Figtree GA, Kuchel PW. Biophys J; 2013 Apr 16; 104(8):1676-84. PubMed ID: 23601315 [Abstract] [Full Text] [Related]
54. Abnormal membrane sodium transport in Liddle's syndrome. Gardner JD, Lapey A, Simopoulos P, Bravo EL. J Clin Invest; 1971 Nov 16; 50(11):2253-8. PubMed ID: 4328882 [Abstract] [Full Text] [Related]
55. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. II. Effects of K+-free medium, ouabain and insulin upon the fate of glucose in rat diaphragm. Clausen T. Biochim Biophys Acta; 1966 Jul 13; 120(3):361-8. PubMed ID: 5968202 [No Abstract] [Full Text] [Related]
56. A procedure for measurement of distribution spaces in isolated fat cells. Gliemann J, Osterlind K, Vinten J, Gammeltoft S. Biochim Biophys Acta; 1972 Nov 24; 286(1):1-9. PubMed ID: 4659260 [No Abstract] [Full Text] [Related]
57. Effects of insulin on alkali-cation movements across muscle and epithelial cell membranes. Erlij D, Schoen HF. Ann N Y Acad Sci; 1981 Nov 24; 372():272-90. PubMed ID: 7041751 [No Abstract] [Full Text] [Related]
58. Sodium transport in turtle erythrocytes. Apparent stimulation of exchange diffusion by anaerobiosis. Klahr S, Shaw AB, Hwang KH, Miller CL. J Gen Physiol; 1969 Oct 24; 54(4):479-93. PubMed ID: 5823213 [Abstract] [Full Text] [Related]
59. Sodium movements in the human red blood cell. Sachs JR. J Gen Physiol; 1970 Sep 24; 56(3):322-41. PubMed ID: 5476387 [Abstract] [Full Text] [Related]
60. Phosphorylation of the adipose/muscle-type glucose transporter (GLUT4) and its relationship to glucose transport activity. Schürmann A, Mieskes G, Joost HG. Biochem J; 1992 Jul 01; 285 ( Pt 1)(Pt 1):223-8. PubMed ID: 1637303 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]