These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


235 related items for PubMed ID: 4719137

  • 61. Effects of potassium and ouabain on sodium transport in human red cells.
    Levin ML, Rector FC, Seldin DW.
    Am J Physiol; 1968 Jun; 214(6):1328-32. PubMed ID: 5649487
    [No Abstract] [Full Text] [Related]

  • 62. [Comparative analysis of potassium and sodium flux across a muscle fiber membrane in a saline medium deficient in alkali metal cations].
    Vereninov AA, Marakhova II.
    Tsitologiia; 1981 Mar; 23(3):312-22. PubMed ID: 6972647
    [Abstract] [Full Text] [Related]

  • 63. Cation transport and membrane morphology.
    Kirk RG, Tosteson DC.
    J Membr Biol; 1973 Mar; 12(3):273-85. PubMed ID: 4781070
    [No Abstract] [Full Text] [Related]

  • 64. Cation transport in dog red cells.
    Romualdez A, Sha'afi RI, Lange Y, Solomon AK.
    J Gen Physiol; 1972 Jul; 60(1):46-57. PubMed ID: 5042023
    [Abstract] [Full Text] [Related]

  • 65. Some characteristics of D-glucose uptake by isolated plasma membranes of rat white adipose tissue.
    Giacobino JP, Favarger P.
    Life Sci II; 1972 Aug 08; 11(15):763-71. PubMed ID: 4656882
    [No Abstract] [Full Text] [Related]

  • 66. Anesthetics expand erythrocyte membranes without causing loss of K + .
    Roth S, Seeman P.
    Biochim Biophys Acta; 1972 Jan 17; 255(1):190-8. PubMed ID: 5010994
    [No Abstract] [Full Text] [Related]

  • 67.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 68.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 69. Sodium movements in high-sodium beef red cells: properties of a ouabain-insensitive exchange diffusion.
    Motais R.
    J Physiol; 1973 Sep 17; 233(2):395-422. PubMed ID: 4747234
    [Abstract] [Full Text] [Related]

  • 70. Some aspects of sodium transport in chicken erythrocytes.
    Gökhan N, Oztas B.
    Arch Int Physiol Biochim; 1974 Feb 17; 82(1):63-8. PubMed ID: 4137194
    [No Abstract] [Full Text] [Related]

  • 71.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 72. Quantification of the maximum capacity for active sodium-potassium transport in rat skeletal muscle.
    Clausen T, Everts ME, Kjeldsen K.
    J Physiol; 1987 Jul 17; 388():163-81. PubMed ID: 2443689
    [Abstract] [Full Text] [Related]

  • 73. An analysis of the leakages of sodium ions into and potassium ions out of striated muscle cells.
    Sjodin RA, Beaugé LA.
    J Gen Physiol; 1973 Feb 17; 61(2):222-50. PubMed ID: 4540059
    [Abstract] [Full Text] [Related]

  • 74.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 75.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 76. Ionic effects on glucose transport and metabolism by isolated mouse fat cells incubated with or without insulin. 3. Effects of replacement of Na+.
    Letarte J, Renold AE.
    Biochim Biophys Acta; 1969 Jul 15; 183(2):366-74. PubMed ID: 5792248
    [No Abstract] [Full Text] [Related]

  • 77.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 78. Influence of chronic alterations of salt intake and aging on the kinetic of red cell Na+ and K+ transport in Sprague-Dawley rats.
    Zicha J, Duhm J.
    Physiol Bohemoslov; 1990 Jul 15; 39(1):37-44. PubMed ID: 2142786
    [Abstract] [Full Text] [Related]

  • 79. Effects of detergents on Na+ + K+-dependent ATPase activity in plasma-membrane fractions prepared from frog muscles. Studies of insulin action on Na+ and K+ transport.
    Omatsu-Kanbe M, Kitasato H.
    Biochem J; 1987 Sep 15; 246(3):583-8. PubMed ID: 2825643
    [Abstract] [Full Text] [Related]

  • 80. Energy metabolism in human erythrocytes. II. Effects of glucose depletion.
    Feig SA, Segel GB, Shohet SB, Nathan DG.
    J Clin Invest; 1972 Jun 15; 51(6):1547-54. PubMed ID: 5024046
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.