These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Enzymological aspects of the pathways for trimethylamine oxidation and C1 assimilation of obligate methylotrophs and restricted facultative methylotrophs. Colby J, Zatman LJ. Biochem J; 1975 Jun; 148(3):513-20. PubMed ID: 1200991 [Abstract] [Full Text] [Related]
3. Assimilation of exogenous fructose, aspartate and some organic acids during the growth of methylotrophs. Colby J, Zatman LJ. J Gen Microbiol; 1975 Sep; 90(1):169-77. PubMed ID: 1176960 [Abstract] [Full Text] [Related]
4. Purification and properties of the trimethylamine dehydrogenase of bacterium 4B6. Colby J, Zatman LJ. Biochem J; 1974 Dec; 143(3):555-67. PubMed ID: 4462741 [Abstract] [Full Text] [Related]
5. Tricarboxylic acid-cycle and related enzymes in restricted facultative methylotrophs. Colby J, Zatman LJ. Biochem J; 1975 Jun; 148(3):505-11. PubMed ID: 991 [Abstract] [Full Text] [Related]
6. Pseudomonas putida A ATCC 12633 oxidizes trimethylamine aerobically via two different pathways. Liffourrena AS, Salvano MA, Lucchesi GI. Arch Microbiol; 2010 Jun; 192(6):471-6. PubMed ID: 20437165 [Abstract] [Full Text] [Related]
7. Oxidation of methanol by facultative and obligate methylotrophs. Michalik J, Raczyńska-Bojanowska K. Acta Biochim Pol; 1976 Jun; 23(4):375-86. PubMed ID: 827889 [Abstract] [Full Text] [Related]
8. Inhibition by trimethylamine of methylamine oxidation by Paracoccus denitrificans and bacterium W3A1. Davidson VL, Kumar MA. Biochim Biophys Acta; 1990 Apr 26; 1016(3):339-43. PubMed ID: 2331476 [Abstract] [Full Text] [Related]
9. The effect of fluoroacetate on the growth of the facultative methylotrophs bacterium 5H2, Pseudomonas AM1 and bacterium 5B1. Cox RB, Zatman LJ. J Gen Microbiol; 1976 Apr 26; 93(2):397-400. PubMed ID: 932683 [No Abstract] [Full Text] [Related]
10. Regulation by carbon source of enzyme expression and slime production in bacterium W3A1. Davidson VL. J Bacteriol; 1985 Nov 26; 164(2):941-3. PubMed ID: 3902804 [Abstract] [Full Text] [Related]
11. Microbial oxidation of amines. Partial purification of a trimethylamine mono-oxygenase from Pseudomonas aminovorans and its role in growth on trimethylamine. Boulton CA, Crabbe MJ, Large PJ. Biochem J; 1974 May 26; 140(2):253-63. PubMed ID: 4156168 [Abstract] [Full Text] [Related]
12. New obligate methylotroph. Dahl JS, Mehta RJ, Hoare DS. J Bacteriol; 1972 Feb 26; 109(2):916-21. PubMed ID: 4110149 [Abstract] [Full Text] [Related]
13. Physiological studies of methane and methanol-oxidizing bacteria: oxidation of C-1 compounds by Methylococcus capsulatus. Patel RN, Hoare DS. J Bacteriol; 1971 Jul 26; 107(1):187-92. PubMed ID: 5563868 [Abstract] [Full Text] [Related]
14. A novel denitrifying bacterial isolate that degrades trimethylamine both aerobically and anaerobically via two different pathways. Kim SG, Bae HS, Lee ST. Arch Microbiol; 2001 Oct 26; 176(4):271-7. PubMed ID: 11685371 [Abstract] [Full Text] [Related]
15. Oxidation of C-1 compounds by Pseudomonas sp. MS. Kung HF, Wagner C. Biochem J; 1970 Feb 26; 116(3):357-65. PubMed ID: 5435683 [Abstract] [Full Text] [Related]
17. [Oxidation and assimilation pathways of methylated amines in Arthrobacter globiformis]. Loginova NV, Trotsenko IU. Mikrobiologiia; 1976 Feb 26; 45(2):217-23. PubMed ID: 933867 [Abstract] [Full Text] [Related]
18. Distribution of the enzymes oxidizing secondary and tertiary amines in Pseudomonas aminovorans grown on various substrates. Jarman TR, Large PJ. J Gen Microbiol; 1972 Nov 26; 73(1):205-8. PubMed ID: 4653957 [No Abstract] [Full Text] [Related]