These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


267 related items for PubMed ID: 4745680

  • 1. Ionic control or renal gluconeogenesis. 3. The effects of changes in pH, pCO2, and bicarbonate concentration.
    Kurokawa K, Rasmussen H.
    Biochim Biophys Acta; 1973 Jun 20; 313(1):42-58. PubMed ID: 4745680
    [No Abstract] [Full Text] [Related]

  • 2. Ioni control of renal gluconeogenesis. I. The interrelated effect of calcium and hydrogen ions.
    Kurokawa K, Rasmussen H.
    Biochim Biophys Acta; 1973 Jun 20; 313(1):17-31. PubMed ID: 4745675
    [No Abstract] [Full Text] [Related]

  • 3. Ionic control of renal gluconeogenesis. IV. Effect of extracellular phosphate concentration.
    Kurokawa K, Rasmussen H.
    Biochim Biophys Acta; 1973 Jun 20; 313(1):59-71. PubMed ID: 4355566
    [No Abstract] [Full Text] [Related]

  • 4. Renal gluconeogenesis: effects of parathyroid hormone and dibutyryl 3',5'-AMP.
    Rasmussen H, Nagata N.
    Biochim Biophys Acta; 1970 Jul 21; 215(1):17-28. PubMed ID: 4321961
    [No Abstract] [Full Text] [Related]

  • 5. Renal gluconeogenesis: effects of Ca2+ and H+.
    Nagata N, Rasmussen H.
    Biochim Biophys Acta; 1970 Jul 21; 215(1):1-16. PubMed ID: 4321963
    [No Abstract] [Full Text] [Related]

  • 6. Gluconeogenesis in renal cortical tubules. Effect of phenformin.
    Gordon EE, De Hartog M.
    Diabetes; 1973 Jan 21; 22(1):50-7. PubMed ID: 4683795
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Ionic control of renal gluconeogenesis. II. The effects of Ca2+ and H+ upon the response to parathyroid hormone and cyclic AMP.
    Kurokawa K, Ohno T, Rasmussen H.
    Biochim Biophys Acta; 1973 Jun 20; 313(1):32-41. PubMed ID: 4355565
    [No Abstract] [Full Text] [Related]

  • 12. Transport of metabolic substrates in renal mitochondria.
    Schoolwerth AC, LaNoue KF.
    Annu Rev Physiol; 1985 Jun 20; 47():143-71. PubMed ID: 3888072
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. The effect of combined hypocapnia and hypoxemia upon the energy metabolism of the brain.
    MacMillan V.
    Can J Physiol Pharmacol; 1974 Dec 20; 52(6):1136-46. PubMed ID: 4451885
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. The effects of CO2/HCO3 on the metabolism of glutamine and glutamate by rat kidney cortex mitochondria.
    Scaduto RC, Strzelecki T, Keyser GC, Hoover WJ, Schoolwerth AC.
    Contrib Nephrol; 1985 Dec 20; 47():180-5. PubMed ID: 2866065
    [No Abstract] [Full Text] [Related]

  • 17. Symposium on acid-base homeostasis. Control of renal production of ammonia.
    Pitts RF.
    Kidney Int; 1972 May 20; 1(5):297-305. PubMed ID: 4671210
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Effect of carbon dioxide-bicarbonate mixtures on rat liver mitochondrial oxidative phosphorylation.
    Kasbekar DK.
    Biochim Biophys Acta; 1966 Oct 17; 128(1):205-8. PubMed ID: 5972363
    [No Abstract] [Full Text] [Related]

  • 20. Acid-base alterations and renal gluconeogenesis: effect of pH, bicarbonate concentration, and PCO2.
    Kamm DE, Fuisz RE, Goodman AD, Cahill GF.
    J Clin Invest; 1967 Jul 17; 46(7):1172-7. PubMed ID: 6027080
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.