These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
515 related items for PubMed ID: 4754874
1. Effects of anions and cations on the resting membrane potential of internally perfused barnacle muscle fibres. Lakshminarayanaiah N, Rojas E. J Physiol; 1973 Sep; 233(3):613-34. PubMed ID: 4754874 [Abstract] [Full Text] [Related]
6. Some electrical properties of the membrane of the barnacle muscle fibers under internal perfusion. Murayama K, Lakshminarayanaiah N. J Membr Biol; 1977 Jul 14; 35(3):257-83. PubMed ID: 407363 [Abstract] [Full Text] [Related]
7. Effects of permeant monovalent cations on end-plate channels. Gage PW, Van Helden D. J Physiol; 1979 Mar 14; 288():509-28. PubMed ID: 112241 [Abstract] [Full Text] [Related]
8. On the electrogenic sodium pump in mammalian non-myelinated nerve fibres and its activation by various external cations. Rang HP, Ritchie JM. J Physiol; 1968 May 14; 196(1):183-221. PubMed ID: 5653884 [Abstract] [Full Text] [Related]
9. The hyperpolarization of frog skeletal muscle fibres induced by removing potassium from the bathing medium. Akiyama T, Grundfest H. J Physiol; 1971 Aug 14; 217(1):33-60. PubMed ID: 5571933 [Abstract] [Full Text] [Related]
10. The effects of caffeine on sodium transport, membrane potential, mechanical tension and ultrastructure in barnacle muscle fibres. Bittar EE, Hift H, Huddart H, Tong E. J Physiol; 1974 Oct 14; 242(1):1-34. PubMed ID: 4373569 [Abstract] [Full Text] [Related]
11. The membrane properties of the smooth muscle of the guinea-pig portal vein in isotonic and hypertonic solutions. Kuriyama H, Oshima K, Sakamoto Y. J Physiol; 1971 Aug 14; 217(1):179-99. PubMed ID: 5571918 [Abstract] [Full Text] [Related]
12. The role of the sodium pump in the effects of potassium-depleted solutions on mammalian cardiac muscle. Eisner DA, Lederer WJ. J Physiol; 1979 Sep 14; 294():279-301. PubMed ID: 512947 [Abstract] [Full Text] [Related]
13. Effects of monovalent cations on cardiac Na+, K+-ATPase activity and on contractile force. Ku D, Akera T, Tobin T, Brody TM. Naunyn Schmiedebergs Arch Pharmacol; 1975 Sep 14; 290(2-3):113-31. PubMed ID: 127126 [Abstract] [Full Text] [Related]
14. Ammonium action on post-synaptic inhibition in crayfish neurones: implications for the mechanism of chloride extrusion. Aickin CC, Deisz RA, Lux HD. J Physiol; 1982 Aug 14; 329():319-39. PubMed ID: 7143250 [Abstract] [Full Text] [Related]
15. Block and activation of the pace-maker channel in calf purkinje fibres: effects of potassium, caesium and rubidium. DiFrancesco D. J Physiol; 1982 Aug 14; 329():485-507. PubMed ID: 6292407 [Abstract] [Full Text] [Related]
16. Inhibition by K+ of Na+-dependent D-aspartate uptake into brain membrane saccules. Danbolt NC, Storm-Mathisen J. J Neurochem; 1986 Sep 14; 47(3):825-30. PubMed ID: 2426409 [Abstract] [Full Text] [Related]
17. Rubidium block and rubidium permeability of the inward rectifier of frog skeletal muscle fibres. Standen NB, Stanfield PR. J Physiol; 1980 Jul 14; 304():415-35. PubMed ID: 7441543 [Abstract] [Full Text] [Related]
18. Activation of electrogenic sodium pump in mammalian skeletal muscle by external cations. Akaike N. Pflugers Arch; 1975 Apr 02; 355(4):281-90. PubMed ID: 1239718 [Abstract] [Full Text] [Related]
19. The effects of monovalent cations Li+, Na+, K+, NH4+, Rb+ and Cs+ on the solid and solution structures of the nucleic acid components. Metal ion binding and sugar conformation. Tajmir-Riahi HA, Messaoudi S. J Biomol Struct Dyn; 1992 Oct 02; 10(2):345-65. PubMed ID: 1334674 [Abstract] [Full Text] [Related]
20. Isolation of calcium current and its sensitivity to monovalent cations in dialysed ventricular cells of guinea-pig. Matsuda H, Noma A. J Physiol; 1984 Dec 02; 357():553-73. PubMed ID: 6096535 [Abstract] [Full Text] [Related] Page: [Next] [New Search]