These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
139 related items for PubMed ID: 4760456
1. Adrenal insufficiency and electrophysiological measures of auditory sensitivity. Conn FW, Mast TE. Am J Physiol; 1973 Dec; 225(6):1430-6. PubMed ID: 4760456 [No Abstract] [Full Text] [Related]
2. Hearing of modulation in sounds. Kay RH. Physiol Rev; 1982 Jul; 62(3):894-975. PubMed ID: 7045902 [No Abstract] [Full Text] [Related]
5. Neonatal development of auditory system potentials averaged from the scalp of rat and cat. Jewett DL, Romano MN. Brain Res; 1972 Jan 14; 36(1):101-15. PubMed ID: 5008374 [No Abstract] [Full Text] [Related]
8. Far-field acoustic response: origins in the cat. Buchwald JS, Huang C. Science; 1975 Aug 01; 189(4200):382-4. PubMed ID: 1145206 [Abstract] [Full Text] [Related]
9. Comparison of electrical and acoustical stimulation of the cat ear. Simmons FB, Glattke TJ. Ann Otol Rhinol Laryngol; 1972 Oct 01; 81(5):731-7. PubMed ID: 4651115 [No Abstract] [Full Text] [Related]
10. On the origin of the auditory averaged evoked responses recorded from the scalp in the anesthetized cat. Kevanishvili ZS, Kajaia OA. Acta Otolaryngol; 1973 Oct 01; 76(2):98-108. PubMed ID: 4771958 [No Abstract] [Full Text] [Related]
11. Function of the olivocochlear system. Pfalz KJ. Adv Otorhinolaryngol; 1973 Oct 01; 20():311-5. PubMed ID: 4710514 [No Abstract] [Full Text] [Related]
12. Middle- and long-latency auditory evoked responses recorded from the vertex of normal and chronically lesioned cats. Buchwald JS, Hinman C, Norman RJ, Huang CM, Brown KA. Brain Res; 1981 Jan 26; 205(1):91-109. PubMed ID: 6258712 [No Abstract] [Full Text] [Related]
14. Electrical stimulation of the auditory nerve in cats. Long term electrophysiological and histological results. Simmons FB. Ann Otol Rhinol Laryngol; 1979 Oct 31; 88(4 Pt 1):533-9. PubMed ID: 475252 [Abstract] [Full Text] [Related]
15. Faster recovery in central than in peripheral auditory system following a reversible cochlear deafferentation. Zheng XY, McFadden SL, Henderson D. Neuroscience; 1998 Jul 31; 85(2):579-86. PubMed ID: 9622254 [Abstract] [Full Text] [Related]
16. Preservation of central auditory function in the deafness mouse. Bock GR, Frank MP, Steel KP. Brain Res; 1982 May 13; 239(2):608-12. PubMed ID: 7093705 [Abstract] [Full Text] [Related]
17. An investigation of the auditory frequency-following responses as compared to cochlear potentials. Hou SM, Lipscomb DM. Arch Otorhinolaryngol; 1979 May 13; 222(3):235-40. PubMed ID: 444158 [Abstract] [Full Text] [Related]
18. [Postsynaptic, auditory, crossed, efferent inhibition in ventral cochlear nucleus and its blockade by strychnine nitrate (in guinea pigs)]. Pirsig W, Pfalz R, Sadanaga M. Arch Klin Exp Ohren Nasen Kehlkopfheilkd; 1968 May 13; 190(1):60-8. PubMed ID: 4299075 [No Abstract] [Full Text] [Related]
19. Derived evoked potentials for continuous tones using a hybrid electrical-acoustical stimulation. Aran JM, Erre JP, de Sauvage RC. Hear Res; 1985 May 13; 20(3):289-93. PubMed ID: 4086387 [Abstract] [Full Text] [Related]
20. [Evoked auditory potentials using electric stimulation of the ear. Experimental study]. Charlet de Sauvage R. Rev Laryngol Otol Rhinol (Bord); 1983 May 13; 104(2):157-65. PubMed ID: 6878917 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]