These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


115 related items for PubMed ID: 4836962

  • 1. Monosaccharide formation from hydrocarbon by Candida rugosa.
    Iida M, Finnerty WR.
    Z Allg Mikrobiol; 1974; 14(2):109-14. PubMed ID: 4836962
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Anaerobic formation of n-decyl alcohol from n-decene-1 by resting cells of Candida rugosa.
    Iida M, Iizuka H.
    Z Allg Mikrobiol; 1970; 10(4):245-51. PubMed ID: 5485018
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. [Influence of fatty acids on the development of Candida tropicalis in the presence of alkanes].
    Duvnjak Z, Azoulay E.
    Ann Inst Pasteur (Paris); 1972 May; 122(5):987-1007. PubMed ID: 5050885
    [No Abstract] [Full Text] [Related]

  • 8. Cellular fatty acids derived from normal alkanes by Candida rugosa.
    Iida M, Kobayashi H, Iizuka H.
    Z Allg Mikrobiol; 1980 May; 20(7):449-57. PubMed ID: 7434793
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. [Effect of the concentration of phosphorus and nitrogen in the nutrient medium on the phosphorus consumption of the hydrocarbon-oxidizing fungus Candida tropicalis].
    Rachinskiĭ VV, Tukan LI.
    Prikl Biokhim Mikrobiol; 1973 May; 9(6):818-23. PubMed ID: 4805931
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Inhibition of glucose assimilation and transport by n-decane and other n-alkanes in Candida 107.
    Gill CO, Ratledge C.
    J Gen Microbiol; 1973 Mar; 75(1):11-22. PubMed ID: 4722560
    [No Abstract] [Full Text] [Related]

  • 15. [Lipid and hydrocarbon composition of Candida tropicalis during growth on media with organic acids].
    Zhelifonova VP, Il'ina VI, Dediukhina EG, Eroshin VK.
    Mikrobiologiia; 1974 Mar; 43(5):804-8. PubMed ID: 4444555
    [No Abstract] [Full Text] [Related]

  • 16. Alkane oxidation by a particulate preparation from Candida.
    Liu CM, Johnson MJ.
    J Bacteriol; 1971 Jun; 106(3):830-4. PubMed ID: 4326743
    [Abstract] [Full Text] [Related]

  • 17. [Formation of citric acids by Candida lipolytica yeasts growing on n-alkanes].
    Finogenova TV, Illarionova VI, Lozinov AB.
    Mikrobiologiia; 1973 Jun; 42(5):790-4. PubMed ID: 4792244
    [No Abstract] [Full Text] [Related]

  • 18. [Fatty acid oxidation by yeasts of the genus Candida cultivated on n-alkanes].
    Karpenko MK, Kvasnikov EI, Ovchar IG, Povazhnaia TM.
    Mikrobiol Zh; 1969 Jun; 31(4):291-7. PubMed ID: 5405225
    [No Abstract] [Full Text] [Related]

  • 19. [Kinetics of hydrocarbon assimilation by Candida lipolytica].
    Goma G, Pareilleux A, Durand G.
    Arch Mikrobiol; 1973 Jun; 88(2):97-109. PubMed ID: 4684078
    [No Abstract] [Full Text] [Related]

  • 20. [Oxidation and utilization of low-molecular n-alkanes by Candida tropicalis and Torulopsis famata yeasts].
    Solomko EF, Solonin VN.
    Mikrobiol Zh; 1973 Jun; 35(3):363-6. PubMed ID: 4799670
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.