These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
139 related items for PubMed ID: 4853134
21. Mechanisms of active transport in isolated bacterial membrane vesicles. X. Inactivation of D-lactate dehydrogenase and D-lactate dehydrogenase-coupled transport in Escherichia coli membrane vesicles by an acetylenic substrate. Walsh CT, Abeles RH, Kaback HR. J Biol Chem; 1972 Dec 25; 247(24):7858-63. PubMed ID: 4565667 [No Abstract] [Full Text] [Related]
22. Relationship between amino acid transport and electron transport by membrane vesicles of Micrococcus denitrificans. White DC, Tucker AN, Kaback HR. Arch Biochem Biophys; 1974 Dec 25; 165(2):672-80. PubMed ID: 4441098 [No Abstract] [Full Text] [Related]
23. Explanation for the apparent inefficiency of reduced nicotinamide adenine dinucleotide in energizing amino acid transport in membrane vesicles. Hampton ML, Freese E. J Bacteriol; 1974 May 25; 118(2):497-504. PubMed ID: 4364022 [Abstract] [Full Text] [Related]
24. Transient pH changes during D-lactate oxidation by membrane vesicles. Reeves JP. Biochem Biophys Res Commun; 1971 Nov 25; 45(4):931-6. PubMed ID: 4330145 [No Abstract] [Full Text] [Related]
25. Generation of ATP during cytochrome-linked anaerobic electron transport in propionic acid bacteria. de Vries W, van Wyck-Kapteyn WM, Stouthamer AH. J Gen Microbiol; 1973 May 25; 76(1):31-41. PubMed ID: 4353042 [No Abstract] [Full Text] [Related]
26. Mechanisms of active transport in isolated bacterial membrane vesicles. XII. Active transport by a mutant of Escherichia coli uncoupled for oxidative phosphorylation. Prezioso G, Hong JS, Kerwar GK, Kaback HR. Arch Biochem Biophys; 1973 Feb 25; 154(2):575-82. PubMed ID: 4266260 [No Abstract] [Full Text] [Related]
27. Transport of succinate in Escherichia coli. III. Biochemical and genetic studies of the mechanism of transport in membrane vesicles. Lo TC, Rayman MK, Sanwal BD. Can J Biochem; 1974 Oct 25; 52(10):854-66. PubMed ID: 4138960 [No Abstract] [Full Text] [Related]
28. Mechanisms of active transport in isolated bacterial membrane vesicles. VII. Fluorescence of 1-anilino-8-naphthalenesulfonate during D-lactate oxidation by membrane vesicles from Escherichia coli. Reeves JP, Lombardi FJ, Kaback HR. J Biol Chem; 1972 Oct 10; 247(19):6204-11. PubMed ID: 4568608 [No Abstract] [Full Text] [Related]
29. Citrate uptake in membrane vesicles of Klebsiella aerogenes. Johnson CL, Cha YA, Stern JR. J Bacteriol; 1975 Feb 10; 121(2):682-7. PubMed ID: 1112775 [Abstract] [Full Text] [Related]
30. Membrane transport as a potential target for antibiotic action. Walsh CT, Kaback HR. Ann N Y Acad Sci; 1974 May 10; 235(0):519-41. PubMed ID: 4604751 [No Abstract] [Full Text] [Related]
31. Utilization of gluconate by Escherichia coli. Uptake of D-gluconate by a mutant impaired in gluconate kinase activity and by membrane vesicles derived therefrom. Pouysségur JM, Faik P, Kornberg HL. Biochem J; 1974 May 10; 140(2):193-203. PubMed ID: 4375960 [Abstract] [Full Text] [Related]
39. Evaluation of the chemiosmotic interpretation of active transport in bacterial membrane vesicles. Lombardi FJ, Reeves JP, Short SA, Kaback HR. Ann N Y Acad Sci; 1974 Feb 18; 227():312-27. PubMed ID: 4363926 [No Abstract] [Full Text] [Related]
40. [Effect of changes in the oxygen metabolism on the energy metabolism and proliferation of Ehrlich ascites tumor cells cultured in vitro (author's transl)]. Krause HP, Schneider F. Hoppe Seylers Z Physiol Chem; 1974 Nov 18; 355(11):1335-40. PubMed ID: 4461637 [No Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]