These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
164 related items for PubMed ID: 4855566
21. Deciphering operation of tryptophan-independent pathway in high indole-3-acetic acid (IAA) producing Micrococcus aloeverae DCB-20. Ahmad E, Sharma SK, Sharma PK. FEMS Microbiol Lett; 2020 Jan 15; 367(24):. PubMed ID: 33201985 [Abstract] [Full Text] [Related]
22. The Distribution of Tryptophan-Dependent Indole-3-Acetic Acid Synthesis Pathways in Bacteria Unraveled by Large-Scale Genomic Analysis. Zhang P, Jin T, Kumar Sahu S, Xu J, Shi Q, Liu H, Wang Y. Molecules; 2019 Apr 10; 24(7):. PubMed ID: 30974826 [Abstract] [Full Text] [Related]
23. Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Patten CL, Blakney AJ, Coulson TJ. Crit Rev Microbiol; 2013 Nov 10; 39(4):395-415. PubMed ID: 22978761 [Abstract] [Full Text] [Related]
24. The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species. Kemp P, White RW, Lander DJ. J Gen Microbiol; 1975 Sep 10; 90(1):100-14. PubMed ID: 1236930 [Abstract] [Full Text] [Related]
25. Novel tryptophan metabolic pathways in auxin biosynthesis in silkworm. Yokoyama C, Takei M, Kouzuma Y, Nagata S, Suzuki Y. J Insect Physiol; 2017 Aug 10; 101():91-96. PubMed ID: 28733236 [Abstract] [Full Text] [Related]
26. The pathway of auxin biosynthesis in plants. Mano Y, Nemoto K. J Exp Bot; 2012 May 10; 63(8):2853-72. PubMed ID: 22447967 [Abstract] [Full Text] [Related]
27. The excessive production of indole-3-acetic acid and its significance in studies of the biosynthesis of this regulator of plant growth and development. Kawaguchi M, Syono K. Plant Cell Physiol; 1996 Dec 10; 37(8):1043-8. PubMed ID: 9032962 [Abstract] [Full Text] [Related]
29. Indole-3-acetic acid (IAA) production in symbiotic and non-symbiotic nitrogen-fixing bacteria and its optimization by Taguchi design. Shokri D, Emtiazi G. Curr Microbiol; 2010 Sep 10; 61(3):217-25. PubMed ID: 20526603 [Abstract] [Full Text] [Related]
32. The biosynthesis of valine from isobutyrate by peptostreptococcus elsdenii and Bacteroides ruminicola. Allison MJ, Peel JL. Biochem J; 1971 Feb 10; 121(3):431-7. PubMed ID: 5119780 [Abstract] [Full Text] [Related]
34. Variation in Indole-3-Acetic Acid Production by Wild Saccharomyces cerevisiae and S. paradoxus Strains from Diverse Ecological Sources and Its Effect on Growth. Liu YY, Chen HW, Chou JY. PLoS One; 2016 Feb 10; 11(8):e0160524. PubMed ID: 27483373 [Abstract] [Full Text] [Related]
36. Degradation of tryptophan and related indolic compounds by ruminal bacteria, protozoa and their mixture in vitro. Mohammed N, Onodera R, Or-Rashid MM. Amino Acids; 2003 Feb 10; 24(1-2):73-80. PubMed ID: 12624737 [Abstract] [Full Text] [Related]
40. Relationship between tryptophan biosynthesis and indole-3-acetic acid production in Azospirillum: identification and sequencing of a trpGDC cluster. Zimmer W, Aparicio C, Elmerich C. Mol Gen Genet; 1991 Sep 10; 229(1):41-51. PubMed ID: 1896020 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]