These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


168 related items for PubMed ID: 4860147

  • 1. Inhibition by sparsomycin and other antibiotics of the puromycin-induced release of polypeptide from ribosomes.
    Goldberg IH, Mitsugi K.
    Biochemistry; 1967 Feb; 6(2):383-91. PubMed ID: 4860147
    [No Abstract] [Full Text] [Related]

  • 2. Studies on the formation of transfer ribonucleic acid-ribosome complexes. 8. Survey of the effect of antibiotics of N-acetyl-phenylalanyl-puromycin formation: possible mechanism of chloramphenicol action.
    Pestka S.
    Arch Biochem Biophys; 1970 Jan; 136(1):80-8. PubMed ID: 4907015
    [No Abstract] [Full Text] [Related]

  • 3. Stabilization of N-acetylphenylalanyl transfer ribonucleic acid binding to ribosomes by sparsomycin.
    Herner AE, Goldberg IH, Cohen LB.
    Biochemistry; 1969 Apr; 8(4):1335-44. PubMed ID: 4896459
    [No Abstract] [Full Text] [Related]

  • 4. Amino acylaminonucleoside inhibitors of protein synthesis. The effect of amino acyl ribonucleic acid on the inhibition.
    Coutsogeorgopoulos C.
    Biochemistry; 1967 Jun; 6(6):1704-11. PubMed ID: 5340946
    [No Abstract] [Full Text] [Related]

  • 5. The effect of antibiotics on the coded binding of peptidyl-tRNA to the ribosome and on the transfer of the peptidyl residue to puromycin.
    Cerná J, Rychlík I, Pulkrábek P.
    Eur J Biochem; 1969 May 01; 9(1):27-35. PubMed ID: 4891613
    [No Abstract] [Full Text] [Related]

  • 6. Peptide bond formation on the ribosome. Structural requirements for inhibition of protein synthesis and of release of peptides from peptidyl-tRNA on bacterial and mammalian ribosomes by aminoacyl and nucleotidyl analogues of puromycin.
    Harris RJ, Hanlon JE, Symons RH.
    Biochim Biophys Acta; 1971 Jun 30; 240(2):244-62. PubMed ID: 4934602
    [No Abstract] [Full Text] [Related]

  • 7. Failure of fusidic acid and siomycin to block ribosomes in the pretranslocated state.
    Celma ML, Vazquez D, Modolell J.
    Biochem Biophys Res Commun; 1972 Sep 05; 48(5):1240-6. PubMed ID: 4560008
    [No Abstract] [Full Text] [Related]

  • 8. On the mechanisms of inhibition of polypeptide synthesis by the antibiotics sparsomycin and pactamycin.
    Goldberg IH, Stewart ML, Ayuso M, Kappen LS.
    Fed Proc; 1973 Jun 05; 32(6):1688-97. PubMed ID: 4575886
    [No Abstract] [Full Text] [Related]

  • 9. Vernamycin A inhibits the non-enzymatic binding of fMet-tRNA to ribosomes.
    Ennis HL, Duffy KE.
    Biochim Biophys Acta; 1972 Sep 29; 281(1):93-102. PubMed ID: 4563532
    [No Abstract] [Full Text] [Related]

  • 10. Localization of sparsomycin action to the peptide-bond-forming step.
    Jayaraman J, Goldberg IH.
    Biochemistry; 1968 Jan 29; 7(1):418-21. PubMed ID: 4921281
    [No Abstract] [Full Text] [Related]

  • 11. Effects of some inhibitors of protein synthesis on the binding of aminoacyl tRNA to ribosomal subunits.
    Vazquez D, Monro RE.
    Biochim Biophys Acta; 1967 Jun 20; 142(1):155-73. PubMed ID: 4860478
    [No Abstract] [Full Text] [Related]

  • 12. Studies on the formation of transfer ribonucleic acid-ribosome complexes. XXIV. Effects of antibiotics on binding of aminoacyl-oligonucleotides to ribosomes.
    Harris R, Pestka S.
    J Biol Chem; 1973 Feb 25; 248(4):1168-74. PubMed ID: 4568810
    [No Abstract] [Full Text] [Related]

  • 13. Mechanism of action of bottromycin in polypeptide biosynthesis.
    Lin YC, Tanaka N.
    J Biochem; 1968 Jan 25; 63(1):1-7. PubMed ID: 4871736
    [No Abstract] [Full Text] [Related]

  • 14. Susceptibility of 55S mitochondrial ribosomes to antibiotics inhibitory to prokaryotic ribosomes, lincomycin, chloramphenicol and PA114A.
    Denslow ND, O'Brien TW.
    Biochem Biophys Res Commun; 1974 Mar 15; 57(1):9-16. PubMed ID: 4597411
    [No Abstract] [Full Text] [Related]

  • 15. Inhibition of protein synthesis by blasticidin S. II. Studies on the site of action in E. coli polypeptide synthesizing systems.
    Yamaguchi H, Tanaka N.
    J Biochem; 1966 Dec 15; 60(6):632-42. PubMed ID: 4860846
    [No Abstract] [Full Text] [Related]

  • 16. Effects of macrolide antibiotics on the ribosomal peptidyl transferase in cell-free systems derived from Escherichia coli B and erythromycin-resistant muytant of Escherichia coli B.
    Cerná J, Jonák J, Rychlík I.
    Biochim Biophys Acta; 1971 Jun 17; 240(1):109-21. PubMed ID: 4940152
    [No Abstract] [Full Text] [Related]

  • 17. Initiation of polyphenylalanine synthesis by N-acetylphenylalanyl-SRNA.
    Lucas-Lenard J, Lipmann F.
    Proc Natl Acad Sci U S A; 1967 Apr 17; 57(4):1050-7. PubMed ID: 5340585
    [No Abstract] [Full Text] [Related]

  • 18. Inhibitors of the transfer of amino acids from aminoacyl soluble ribonucleic acid to proteins.
    Clark JM, Chang AY.
    J Biol Chem; 1965 Dec 17; 240(12):4734-9. PubMed ID: 5321312
    [No Abstract] [Full Text] [Related]

  • 19. Mechanism of protein synthesis inhibition by bottromycin A2: studies with puromycin.
    Lin YC, Kinoshita T, Tanak N.
    J Antibiot (Tokyo); 1968 Aug 17; 21(8):471-6. PubMed ID: 4884807
    [No Abstract] [Full Text] [Related]

  • 20. Studies on the formation of transfer ribonucleic acid-ribosome complexes. 23. Chloramphenicol, aminoacyl-oligonucleotides, and Escherichia coli ribosomes.
    Lessard JL, Pestka S.
    J Biol Chem; 1972 Nov 10; 247(21):6909-12. PubMed ID: 4563072
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.