These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


101 related items for PubMed ID: 4879166

  • 1. Phosphoramidates. VII. Determination of kinetic parameters and substrate interrelationships for the phosphoryl transfer enzyme from Escherichia coli.
    Stevens-Clark JR, Conklin KA, Fujimoto A, Smith RA.
    J Biol Chem; 1968 Sep 10; 243(17):4474-8. PubMed ID: 4879166
    [No Abstract] [Full Text] [Related]

  • 2. Phosphoramidates. VI. Purfication and characterization of a phosphoryl transfer enzyme from Escherichia coli.
    Stevens-Clark JR, Theisen MC, Conklin KA, Smith RA.
    J Biol Chem; 1968 Sep 10; 243(17):4468-73. PubMed ID: 4879165
    [No Abstract] [Full Text] [Related]

  • 3. Metabolism of phosphoramidates. II. Further studies on the Escherichia coli phosphoramidate phosphoryl transfer enzyme.
    FUJIMOTO A, SMITH RA.
    Biochim Biophys Acta; 1962 Jan 29; 56():501-11. PubMed ID: 13895714
    [No Abstract] [Full Text] [Related]

  • 4. Phosphoramidates. V. Probable identity of rat liver microsomal glucose 6-phosphatase, phosphoramidase, and phosphoramidate-hexose phosphotransferase.
    Parvin R, Smith RA.
    Biochemistry; 1969 Apr 29; 8(4):1748-55. PubMed ID: 4308726
    [No Abstract] [Full Text] [Related]

  • 5. Kinetic mechanism of maltodextrin phosphorylase.
    Chao J, Johnson GF, Graves DJ.
    Biochemistry; 1969 Apr 29; 8(4):1459-66. PubMed ID: 4897523
    [No Abstract] [Full Text] [Related]

  • 6. Characterization of the cardiolipin synthetase activity of Escherichia coli envelopes.
    Tunaitis E, Cronan JE.
    Arch Biochem Biophys; 1973 Apr 29; 155(2):420-7. PubMed ID: 4574544
    [No Abstract] [Full Text] [Related]

  • 7. The stereochemical course of phosphoryl transfer catalysed by polynucleotide kinase (bacteriophage-T4-infected Escherichia coli B).
    Jarvest RL, Lowe G.
    Biochem J; 1981 Oct 01; 199(1):273-6. PubMed ID: 6279097
    [Abstract] [Full Text] [Related]

  • 8. Studies on the kinetic mechanism and the phosphoryl-enzyme compound of the Escherichia coli acetate kinase reaction.
    Webb BC, Todhunter JA, Purich DL.
    Arch Biochem Biophys; 1976 Mar 01; 173(1):282-92. PubMed ID: 176952
    [No Abstract] [Full Text] [Related]

  • 9. Metabolism of phosphoramidates. IV. A phosphoryl transfer dependent on purine nucleosides.
    Khandwala PK, Smith RA.
    Biochim Biophys Acta; 1967 Apr 25; 136(3):448-58. PubMed ID: 6048262
    [No Abstract] [Full Text] [Related]

  • 10. Evaluation of the phosphoryl-enzyme intermediate concept in the acetate kinase and hexokinase reactions from kinetic studies.
    Purich DL, Fromm HJ.
    Arch Biochem Biophys; 1972 Mar 25; 149(1):307-15. PubMed ID: 4552801
    [No Abstract] [Full Text] [Related]

  • 11. The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli.
    Kaback HR.
    J Biol Chem; 1968 Jul 10; 243(13):3711-24. PubMed ID: 4872728
    [No Abstract] [Full Text] [Related]

  • 12. Kinetic competence of a phosphoryl enzyme intermediate in the glucose-1,6-p2 synthase-catalyzed reaction. Purification, properties, and kinetic studies.
    Wong LJ, Rose IA.
    J Biol Chem; 1976 Sep 25; 251(18):5431-9. PubMed ID: 987038
    [Abstract] [Full Text] [Related]

  • 13. In vitro adenylylation of lysine-sensitive aspartylkinase from Escherichia coli TIR-8.
    Niles EG, Westhead EW.
    Biochemistry; 1973 Apr 24; 12(9):1723-9. PubMed ID: 4349256
    [No Abstract] [Full Text] [Related]

  • 14. TPNH and pyridoxal-5'-phosphate: activators of ADP-glucose pyrophosphorylase of Escherichia coli B1.
    Gentner N, Greenberg E, Preiss J.
    Biochem Biophys Res Commun; 1969 Aug 07; 36(3):373-80. PubMed ID: 4390399
    [No Abstract] [Full Text] [Related]

  • 15. Phosphoryl transfer from α-d-glucose 1-phosphate catalyzed by Escherichia coli sugar-phosphate phosphatases of two protein superfamily types.
    Wildberger P, Pfeiffer M, Brecker L, Rechberger GN, Birner-Gruenberger R, Nidetzky B.
    Appl Environ Microbiol; 2015 Mar 07; 81(5):1559-72. PubMed ID: 25527541
    [Abstract] [Full Text] [Related]

  • 16. [Phosphoenolpyruvate: carbohydrate-phosphotransferase reaction as an initial stage in the metabolism of glucose in E. coli ML].
    Shabolenko VP.
    Biokhimiia; 1971 Mar 07; 36(1):122-8. PubMed ID: 4933645
    [No Abstract] [Full Text] [Related]

  • 17. Utilization of 5,6-dihydrouridine 5'-triphosphate in the reaction catalyzed by Escherichia coli RNA polymerase.
    Roy-Burman P, Roy-Burman S, Visser DW.
    Biochim Biophys Acta; 1967 Jul 18; 142(2):355-67. PubMed ID: 4861436
    [No Abstract] [Full Text] [Related]

  • 18. A kinetically important phosphoryl-enzyme intermediary in the intrinsic purine nucleoside-5'-diphosphokinase activity of Escherichia coli acetate kinase.
    Todhunter JA, Reichel KB, Purich DL.
    Arch Biochem Biophys; 1976 May 18; 174(1):120-8. PubMed ID: 180890
    [No Abstract] [Full Text] [Related]

  • 19. Isotope exchange studies on the Escherichia coli selenophosphate synthetase mechanism.
    Walker H, Ferretti JA, Stadtman TC.
    Proc Natl Acad Sci U S A; 1998 Mar 03; 95(5):2180-5. PubMed ID: 9482859
    [Abstract] [Full Text] [Related]

  • 20. The bacterial phosphotransferase system: kinetic characterization of the glucose, mannitol, glucitol, and N-acetylglucosamine systems.
    Grenier FC, Waygood EB, Saier MH.
    J Cell Biochem; 1986 Mar 03; 31(2):97-105. PubMed ID: 3015992
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.