These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


496 related items for PubMed ID: 4903881

  • 1. Coding properties of methyl-deficient phenylalanyl transfer ribonucleic acid from Escherichia coli.
    Stern R, Gonano F, Fleissner E, Littauer UZ.
    Biochemistry; 1970 Jan 06; 9(1):10-8. PubMed ID: 4903881
    [No Abstract] [Full Text] [Related]

  • 2. Anaerobiosis-induced changes in an isoleucyl transfer ribonucleic acid and the 50S ribosomes of Escherichia coli.
    Kwan CN, Apirion D, Schlessinger D.
    Biochemistry; 1968 Jan 06; 7(1):427-33. PubMed ID: 4921282
    [No Abstract] [Full Text] [Related]

  • 3. The coding properties of methyl-deficient phenylalanine transfer RNA from Escherichia coli.
    Revel M, Littauer UZ.
    J Mol Biol; 1966 Jan 06; 15(1):389-94. PubMed ID: 5330223
    [No Abstract] [Full Text] [Related]

  • 4. Mechanism of inhibition of protein synthesis by spiramycin.
    Ahmed A.
    Biochim Biophys Acta; 1968 Aug 23; 166(1):205-17. PubMed ID: 4972349
    [No Abstract] [Full Text] [Related]

  • 5. Miscoding by Escherichia coli tRNAs for methionine, cysteine and valine in the synthesis of rabbit globin.
    Hunter AR, Jackson RJ.
    Eur J Biochem; 1970 Aug 23; 15(2):381-90. PubMed ID: 4926131
    [No Abstract] [Full Text] [Related]

  • 6. Inhibition by pactamycin of the initiation of protein synthesis. Binding of N-acetylphenylalanyl transfer ribonucleic acid and polyuridylic acid to ribosomes.
    Cohen LB, Herner AE, Goldberg IH.
    Biochemistry; 1969 Apr 23; 8(4):1312-26. PubMed ID: 4896457
    [No Abstract] [Full Text] [Related]

  • 7. On the nature of two ribosomal sites for specific sRNA binding.
    Igarashi K, Kaji A.
    Proc Natl Acad Sci U S A; 1967 Nov 23; 58(5):1971-6. PubMed ID: 4866984
    [No Abstract] [Full Text] [Related]

  • 8. Effect on in vitro methylation on the chromatographic and coding properties of methyl-deficient leucine transfer RNA.
    Capra JD, Peterkofsky A.
    J Mol Biol; 1968 May 14; 33(3):591-607. PubMed ID: 4882614
    [No Abstract] [Full Text] [Related]

  • 9. Protein synthesis in rabbit reticulocytes. Factors controlling internal and terminal methionine codon recognition by the methionyl transfer ribonucleic acid species.
    Gupta N, Chatterjee NK, Woodley CL, Bose KK.
    J Biol Chem; 1971 Dec 25; 246(24):7460-9. PubMed ID: 4944310
    [No Abstract] [Full Text] [Related]

  • 10. Role of modified nucleosides in transfer ribonucleic acid. Effect of removal of the modified base adjacent to 3' end of the anticodon in codon-anticodon interaction.
    Ghosh K, Ghosh HP.
    J Biol Chem; 1972 Jun 10; 247(11):3369-75. PubMed ID: 4555422
    [No Abstract] [Full Text] [Related]

  • 11. The effect of guanylyl-5'-methylene diphosphonate on binding of aminoacyl-transfer ribonucleic acid to ribosomes.
    Shorey RL, Ravel JM, Shive W.
    Arch Biochem Biophys; 1971 Sep 10; 146(1):110-7. PubMed ID: 4947260
    [No Abstract] [Full Text] [Related]

  • 12. Purification of two valine transfer ribonucleic acid species from Escherichia coli and their coding properties.
    Bhaduri S, Bose KK, Chatterjee NK, Gupta NK.
    J Biol Chem; 1971 May 10; 246(9):3030-6. PubMed ID: 4928896
    [No Abstract] [Full Text] [Related]

  • 13. Studies on the binding of phenylalanyl transfer RNA to rat-liver ribosomes.
    Siler J, Moldave K.
    Biochim Biophys Acta; 1969 Nov 19; 195(1):123-9. PubMed ID: 4901827
    [No Abstract] [Full Text] [Related]

  • 14. Binding of N-acetylphenylalanyl tRNA to ribosomes--comparison with the binding of phenylalanyl tRNA.
    Suzuka I, Sekikawa K, Tanaka S.
    Arch Biochem Biophys; 1970 Feb 19; 136(2):430-5. PubMed ID: 4907877
    [No Abstract] [Full Text] [Related]

  • 15. Fidelity in protein synthesis. The role of the ribosome.
    Friedman SM, Berezney R, Weinstein IB.
    J Biol Chem; 1968 Oct 10; 243(19):5044-8. PubMed ID: 4878431
    [No Abstract] [Full Text] [Related]

  • 16. Solvent and specificity. Binding and isoleucylation of phenylalanine transfer ribonucleic acid (Escherichia coli) by isoleucyl transfer ribonucleic acid synthetase from Escherichia coli.
    Yarus M.
    Biochemistry; 1972 Jun 06; 11(12):2352-61. PubMed ID: 4337616
    [No Abstract] [Full Text] [Related]

  • 17. The formation and stabilization of 30S and 50S ribosome couples in Escherichia coli.
    Schlessinger D, Mangiarotti G, Apirion D.
    Proc Natl Acad Sci U S A; 1967 Oct 06; 58(4):1782-9. PubMed ID: 4867673
    [No Abstract] [Full Text] [Related]

  • 18. Formation and properties of the aminoacyl transfer ribonucleic acid-guanosine triphosphate-protein complex.
    Shorey RL, Ravel JM, Garner CW, Shive W.
    J Biol Chem; 1969 Sep 10; 244(17):4555-64. PubMed ID: 4897244
    [No Abstract] [Full Text] [Related]

  • 19. Protein synthesis in wheat embryos.
    Allende JE.
    Natl Cancer Inst Monogr; 1967 Nov 10; 27():169-79. PubMed ID: 4868708
    [No Abstract] [Full Text] [Related]

  • 20. Regulatory mechanisms and protein synthesis. X. Codon recognition on 30 S ribosomes.
    Pestka S, Nirenberg M.
    J Mol Biol; 1966 Oct 28; 21(1):145-71. PubMed ID: 5338993
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.