These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. [The properties of Thiocapsa roseopersicina, strain BBS, isolated from an estuary of the White Sea]. Bogorov LV. Mikrobiologiia; 1974 Mar; 43(2):326-32. PubMed ID: 4275197 [No Abstract] [Full Text] [Related]
24. In Situ Gene Expression Responsible for Sulfide Oxidation and CO2 Fixation of an Uncultured Large Sausage-Shaped Aquificae Bacterium in a Sulfidic Hot Spring. Tamazawa S, Yamamoto K, Takasaki K, Mitani Y, Hanada S, Kamagata Y, Tamaki H. Microbes Environ; 2016 Jun 25; 31(2):194-8. PubMed ID: 27297893 [Abstract] [Full Text] [Related]
25. Mechanisms of CO2 fixation in bacterial photosynthesis studied by the carbon isotope fractionation technique. Sirevåg R, Buchanan BB, Berry JA, Troughton JH. Arch Microbiol; 1977 Feb 04; 112(1):35-8. PubMed ID: 402896 [Abstract] [Full Text] [Related]
26. The oxidation mechanisms of thiosulphate and sulphide in Chlorobium thiosulphatophilum: roles of cytochrome c-551 and cytochrome c-553. Kusai K, Yamanaka T. Biochim Biophys Acta; 1973 Nov 22; 325(2):304-14. PubMed ID: 4357558 [No Abstract] [Full Text] [Related]
27. SULPHUR METABOLISM IN THIORHODACEAE. II. STOICHIOMETRIC RELATIONSHIP OF CO2 FIXATION TO OXIDATION OF HYDROGEN SULPHIDE AND INTRACELLULAR SULPHUR IN CHROMATIUM OKENII. TRUEPER HG. Antonie Van Leeuwenhoek; 1964 Nov 22; 30():385-94. PubMed ID: 14274131 [No Abstract] [Full Text] [Related]
28. [Ability to form H2S in various bacteria]. Rodler M, Vadon V, Pekár K. Zentralbl Bakteriol Orig; 1968 Feb 22; 206(1):117-22. PubMed ID: 4901958 [No Abstract] [Full Text] [Related]
29. The role of potassium in the uptake of CO2 by Micrococcus sodonensis. Perry JJ. Biochim Biophys Acta; 1968 Oct 15; 165(3):538-40. PubMed ID: 5737944 [No Abstract] [Full Text] [Related]
30. The fermentation of L-sorbose by Gluconobacter melanogenus. I. General characteristics of the fermentation. Tsukada Y, Perlman D. Biotechnol Bioeng; 1972 Sep 15; 14(5):799-810. PubMed ID: 4403668 [No Abstract] [Full Text] [Related]
31. [Growth and oxidation of sulfur compounds by Thiocapsa roseopersicina in darkness]. Kondrat'eva EN, Petushkova IuP, Zhukov VG. Mikrobiologiia; 1975 Sep 15; 44(3):389-94. PubMed ID: 1160643 [Abstract] [Full Text] [Related]
32. Variable cellular composition of Chromatium in browing cultures. Schmidt GL, Kamen MD. Arch Mikrobiol; 1970 Sep 15; 73(1):1-18. PubMed ID: 4921934 [No Abstract] [Full Text] [Related]
33. Molecular characterization of inorganic sulfur-compound metabolism in the deep-sea epsilonproteobacterium Sulfurovum sp. NBC37-1. Yamamoto M, Nakagawa S, Shimamura S, Takai K, Horikoshi K. Environ Microbiol; 2010 May 15; 12(5):1144-53. PubMed ID: 20132283 [Abstract] [Full Text] [Related]
34. [Measurement of chlorate reductase activity in enzymatic extracts from bacteria by a manometric method]. Pichinoty F. Arch Mikrobiol; 1969 May 15; 66(4):315-20. PubMed ID: 5384633 [No Abstract] [Full Text] [Related]
35. Regulation of reductase formation in Proteus mirabilis. I. Formation of reductases and enzymes of the formic hydrogenlyase complex in the wild type and in chlorate-resistant mutants. De Groot GN, Stouthamer AH. Arch Mikrobiol; 1969 May 15; 66(3):220-33. PubMed ID: 5384697 [No Abstract] [Full Text] [Related]
36. Metabolic fate of cysteine and methionine in rumen digesta. Nader CJ, Walker DJ. Appl Microbiol; 1970 Nov 15; 20(5):677-81. PubMed ID: 5485079 [Abstract] [Full Text] [Related]
37. Derivatives of cysteine related to the thiosulfate metabolism of sulfur bacteria by the multi-enzyme complex "Sox"-studied by B3LYP-PCM and G3X(MP2) calculations. Steudel R, Steudel Y. Phys Chem Chem Phys; 2010 Jan 21; 12(3):630-44. PubMed ID: 20066349 [Abstract] [Full Text] [Related]
38. Thiosulphate as electron donor in the blue-green alga Anacystis nidulans. Utkilen HC. J Gen Microbiol; 1976 Jul 21; 95(1):177-80. PubMed ID: 822124 [No Abstract] [Full Text] [Related]
39. A bacterial hydrogen-dependent CO2 reductase forms filamentous structures. Schuchmann K, Vonck J, Müller V. FEBS J; 2016 Apr 21; 283(7):1311-22. PubMed ID: 26833643 [Abstract] [Full Text] [Related]