These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


191 related items for PubMed ID: 4930427

  • 21. Glucose fermentation endproducts of Erwinia spp. and other enterobacteria.
    White JN, Starr MP.
    J Appl Bacteriol; 1971 Jun; 34(2):459-75. PubMed ID: 4329516
    [No Abstract] [Full Text] [Related]

  • 22. [A new fermentative type of glucose in Betabacterium isolated from wine].
    Barre P, Coutu C, Gasser F.
    C R Acad Hebd Seances Acad Sci D; 1971 Sep 20; 273(12):1068-71. PubMed ID: 5001906
    [No Abstract] [Full Text] [Related]

  • 23. Factors determining the degree of anaerobiosis of Bifidobacterium strains.
    de Vries W, Stouthamer AH.
    Arch Mikrobiol; 1969 Sep 20; 65(3):275-87. PubMed ID: 4915432
    [No Abstract] [Full Text] [Related]

  • 24. Some slime-forming heterofermentative species of the genus Lactobacillus.
    Sharpe ME, Garvie EI, Tilbury RH.
    Appl Microbiol; 1972 Feb 20; 23(2):389-97. PubMed ID: 4259626
    [Abstract] [Full Text] [Related]

  • 25. Effect of environmental pH on fermentation balance of Lactobacillus bulgaricus.
    Rhee SK, Pack MY.
    J Bacteriol; 1980 Oct 20; 144(1):217-21. PubMed ID: 7419489
    [Abstract] [Full Text] [Related]

  • 26. Heterofermentative metabolism of glucose and ribose and utilisation of citrate by the smooth biotype of Lactobacillus amylovorus NCFB 2745.
    Whitley K, Marshall VM.
    Antonie Van Leeuwenhoek; 1999 Apr 20; 75(3):217-23. PubMed ID: 10427410
    [Abstract] [Full Text] [Related]

  • 27. Polyol production during heterofermentative growth of the plant isolate Lactobacillus florum 2F.
    Tyler CA, Kopit L, Doyle C, Yu AO, Hugenholtz J, Marco ML.
    J Appl Microbiol; 2016 May 20; 120(5):1336-45. PubMed ID: 26913577
    [Abstract] [Full Text] [Related]

  • 28. Regulation of staphylococcal enterotoxin B: effect of anaerobic shock.
    Morse SA, Mah RA.
    Appl Microbiol; 1973 Apr 20; 25(4):553-7. PubMed ID: 4349246
    [Abstract] [Full Text] [Related]

  • 29. Exopolysaccharide (EPS) biosynthesis by Lactobacillus sakei 0-1: production kinetics, enzyme activities and EPS yields.
    Degeest B, Janssens B, De Vuyst L.
    J Appl Microbiol; 2001 Sep 20; 91(3):470-7. PubMed ID: 11556912
    [Abstract] [Full Text] [Related]

  • 30. Effect of glucose concentration on a number of enzymes involved in the aerobic and anaerobic utilization of glucose in turbidostat-cultures of Escherichia coli.
    Doelle HW, Hollywood N, Westwood AW.
    Microbios; 1974 Sep 20; 9(36):221-32. PubMed ID: 4275702
    [No Abstract] [Full Text] [Related]

  • 31. Biosynthesis of alpha-acetolacetate and its converison of diacetyl and acetion in cell-free extracts of Lactobacillus casei.
    Barnes AL, Keenan TW.
    Can J Microbiol; 1972 Apr 20; 18(4):479-85. PubMed ID: 4623970
    [No Abstract] [Full Text] [Related]

  • 32. Studies on encapsulated Lactobacilli. IV. Sucrose utilization by Lactobacillus casei.
    Hammond BF.
    Arch Oral Biol; 1966 Nov 20; 11(11):1199-202. PubMed ID: 5226799
    [No Abstract] [Full Text] [Related]

  • 33. Simplified gas chromatographic procedure for identification of bacterial metabolic products.
    Carlsson J.
    Appl Microbiol; 1973 Feb 20; 25(2):287-9. PubMed ID: 4632854
    [Abstract] [Full Text] [Related]

  • 34. Dynamics of mixed cultures of Lactobacillus plantarum and Propionibacterium shermanii.
    Lee IH, Fredrickson AG, Tsuchiya HM.
    Biotechnol Bioeng; 1976 Apr 20; 18(4):513-26. PubMed ID: 773448
    [Abstract] [Full Text] [Related]

  • 35. 2-KETOGLUCONATE FERMENTATION BY STREPTOCOCCUS FAECALIS.
    GODDARD JL, SOKATCH JR.
    J Bacteriol; 1964 Apr 20; 87(4):844-51. PubMed ID: 14137623
    [Abstract] [Full Text] [Related]

  • 36. ATP formation associated with fumarate and nitrate reduction in growing cultures of Veillonella alcalescens.
    de Vries W, Rietveld-Struijk RM, Stouthamer AH.
    Antonie Van Leeuwenhoek; 1977 Apr 20; 43(2):153-67. PubMed ID: 202192
    [Abstract] [Full Text] [Related]

  • 37. Electrogenic L-malate transport by Lactobacillus plantarum: a basis for energy derivation from malolactic fermentation.
    Olsen EB, Russell JB, Henick-Kling T.
    J Bacteriol; 1991 Oct 20; 173(19):6199-206. PubMed ID: 1917854
    [Abstract] [Full Text] [Related]

  • 38. Application of a metabolic balancing technique to the analysis of microbial fermentation data.
    de Hollander JA.
    Antonie Van Leeuwenhoek; 1991 Oct 20; 60(3-4):275-92. PubMed ID: 1807198
    [Abstract] [Full Text] [Related]

  • 39. Control of lactate production by Selenomonas ruminantium: homotropic activation of lactate dehydrogenase by pyruvate.
    Wallace RJ.
    J Gen Microbiol; 1978 Jul 20; 107(1):45-52. PubMed ID: 103995
    [Abstract] [Full Text] [Related]

  • 40. [End products of glucose fermentation of Pasteurella multocida and P. haemolytica].
    Flossmann KD, Feist H, Erler W.
    Z Allg Mikrobiol; 1976 Jul 20; 16(4):259-62. PubMed ID: 960734
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.