These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


195 related items for PubMed ID: 4934520

  • 1. Valinomycin-induced uptake of potassium in membrane vesicles from Escherichia coli.
    Bhattacharyya P, Epstein W, Silver S.
    Proc Natl Acad Sci U S A; 1971 Jul; 68(7):1488-92. PubMed ID: 4934520
    [Abstract] [Full Text] [Related]

  • 2. Valinomycin-induced cation transport in vesicles does not reflect the activity of K+ transport systems in Escherichia coli.
    Altendorf K, Epstein W, Löhmann A.
    J Bacteriol; 1986 Apr; 166(1):334-7. PubMed ID: 3514580
    [Abstract] [Full Text] [Related]

  • 3. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. Valinomycin-induced rubidium transport.
    Lombardi FJ, Reeves JP, Kaback HR.
    J Biol Chem; 1973 May 25; 248(10):3551-65. PubMed ID: 4573982
    [No Abstract] [Full Text] [Related]

  • 4. Accumulation of lipid-soluble ions and of rubidium as indicators of the electrical potential in membrane vesicles of Escherichia coli.
    Altendorf K, Hirata H, Harold FM.
    J Biol Chem; 1975 Feb 25; 250(4):1405-12. PubMed ID: 1089658
    [Abstract] [Full Text] [Related]

  • 5. Inhibition of the respiratory-linked membrane potential in E. coli membrane vesicles by octapeptin.
    Swanson PE, Storm DR.
    J Antibiot (Tokyo); 1979 May 25; 32(5):511-7. PubMed ID: 393686
    [Abstract] [Full Text] [Related]

  • 6. The effect of valinomycin on the ionic permeability of thin lipid membranes.
    Andreoli TE, Tieffenberg M, Tosteson DC.
    J Gen Physiol; 1967 Dec 25; 50(11):2527-45. PubMed ID: 5584619
    [Abstract] [Full Text] [Related]

  • 7. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation.
    Bakker EP.
    Biochim Biophys Acta; 1982 Sep 15; 681(3):474-83. PubMed ID: 6812627
    [Abstract] [Full Text] [Related]

  • 8. K-Cl transport systems in rabbit renal basolateral membrane vesicles.
    Eveloff J, Warnock DG.
    Am J Physiol; 1987 May 15; 252(5 Pt 2):F883-9. PubMed ID: 3578533
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. The use of K+ diffusion gradients to support transport by Escherichia coli membrane vesicles.
    Hirata H.
    Methods Enzymol; 1979 May 15; 55():676-80. PubMed ID: 379504
    [No Abstract] [Full Text] [Related]

  • 11. Membrane potential and active transport in membrane vesicles from Escherichia coli.
    Schuldiner S, Kaback HR.
    Biochemistry; 1975 Dec 16; 14(25):5451-61. PubMed ID: 172125
    [No Abstract] [Full Text] [Related]

  • 12. Energy coupling in membrane vesicles of Escherichia coli. I. Accumulation of metabolites in response to an electrical potential.
    Hirata H, Altendorf K, Harold FM.
    J Biol Chem; 1974 May 10; 249(9):2939-45. PubMed ID: 4133356
    [No Abstract] [Full Text] [Related]

  • 13. Evaluation of the chemiosmotic interpretation of active transport in bacterial membrane vesicles.
    Lombardi FJ, Reeves JP, Short SA, Kaback HR.
    Ann N Y Acad Sci; 1974 Feb 18; 227():312-27. PubMed ID: 4363926
    [No Abstract] [Full Text] [Related]

  • 14. Transport across isolated bacterial cytoplasmic membranes.
    Kaback HR.
    Biochim Biophys Acta; 1972 Aug 04; 265(3):367-416. PubMed ID: 4581579
    [No Abstract] [Full Text] [Related]

  • 15. Transport in isolated bacterial membrane vesicles.
    Kaback HR.
    Methods Enzymol; 1974 Aug 04; 31():698-709. PubMed ID: 4609121
    [No Abstract] [Full Text] [Related]

  • 16. Mechanisms of active transport in isolated bacterial membrane vesicles. XII. Active transport by a mutant of Escherichia coli uncoupled for oxidative phosphorylation.
    Prezioso G, Hong JS, Kerwar GK, Kaback HR.
    Arch Biochem Biophys; 1973 Feb 04; 154(2):575-82. PubMed ID: 4266260
    [No Abstract] [Full Text] [Related]

  • 17. [Passage of AMP through the membrane of E. coli K 12 in the presence of antibacterial drugs].
    Arena E, Dusonchet L, Gebbia N, Gerbasi F, Guardo M.
    Antibiotica; 1968 Dec 04; 6(4):336-45. PubMed ID: 4906320
    [No Abstract] [Full Text] [Related]

  • 18. Gramicidin, valinomycin, and cation permeability of Streptococcus faecalis.
    Harold FM, Baarda JR.
    J Bacteriol; 1967 Jul 04; 94(1):53-60. PubMed ID: 4961416
    [Abstract] [Full Text] [Related]

  • 19. Functional symmetry of the beta-galactoside carrier in Escherichia coli.
    Teather RM, Hamelin O, Schwarz H, Overath P.
    Biochim Biophys Acta; 1977 Jun 16; 467(3):386-95. PubMed ID: 328041
    [Abstract] [Full Text] [Related]

  • 20. Role of an electrical potential in the coupling of metabolic energy to active transport by membrane vesicles of Escherichia coli.
    Hirata H, Altendorf K, Harold FM.
    Proc Natl Acad Sci U S A; 1973 Jun 16; 70(6):1804-8. PubMed ID: 4578444
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.