These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


229 related items for PubMed ID: 4941558

  • 1. Regulation of synthesis of the aminoacyl-transfer ribonucleic acid synthetases for the branched-chain amino acids of Escherichia coli.
    McGinnis E, Williams LS.
    J Bacteriol; 1971 Oct; 108(1):254-62. PubMed ID: 4941558
    [Abstract] [Full Text] [Related]

  • 2. Derepression of synthesis of the aminoacyl-transfer ribonucleic acid synthetases for the branched-chain amino acids of Escherichia coli.
    McGinnis E, Williams AC, Williams LS.
    J Bacteriol; 1974 Aug; 119(2):554-9. PubMed ID: 4604302
    [Abstract] [Full Text] [Related]

  • 3. Regulation of branched-chain aminoacyl-transfer ribonucleic acid synthetases in an ilvDAC deletion strain of Escherichia coli K-12.
    Coleman W, Kline EL, Brown CS, Williams LS.
    J Bacteriol; 1975 Mar; 121(3):785-93. PubMed ID: 1090603
    [Abstract] [Full Text] [Related]

  • 4. Role of histidine transfer ribonucleic acid in regulation of synthesis of histidyl-transfer ribonucleic acid synthetase of Salmonella typhimurium.
    McGinnis E, Williams LS.
    J Bacteriol; 1972 Feb; 109(2):505-11. PubMed ID: 4333605
    [Abstract] [Full Text] [Related]

  • 5. Regulation of synthesis of methionyl-, prolyl-, and threonyl-transfer ribonucleic acid synthetases of Escherichia coli.
    Archibold ER, Williams LS.
    J Bacteriol; 1972 Mar; 109(3):1020-6. PubMed ID: 4551738
    [Abstract] [Full Text] [Related]

  • 6. Regulation of synthesis of the branched-chain amino acids and cognate aminoacyl-transfer ribonucleic acid synthetases of Escherichia coli: a common regulatory element.
    Jackson J, Williams LS, Umbarger HE.
    J Bacteriol; 1974 Dec; 120(3):1380-6. PubMed ID: 4612020
    [Abstract] [Full Text] [Related]

  • 7. Evidence that the majority of leucine transfer ribonucleic acid is not involved in repression in Salmonella typhimurium.
    Freundlich M, Trela J, Peng W.
    J Bacteriol; 1971 Nov; 108(2):951-3. PubMed ID: 4942773
    [Abstract] [Full Text] [Related]

  • 8. Growth-linked instability of a mutant valyl-transfer ribonucleic acid synthetase in Escherichia coli.
    Anderson JJ, Neidhardt FC.
    J Bacteriol; 1972 Jan; 109(1):315-25. PubMed ID: 4550670
    [Abstract] [Full Text] [Related]

  • 9. Isolation and partial characterization of temperature-sensitive Escherichia coli mutants with altered leucyl- and seryl-transfer ribonucleic acid synthetases.
    Low B, Gates F, Goldstein T, Söll D.
    J Bacteriol; 1971 Nov; 108(2):742-50. PubMed ID: 4942762
    [Abstract] [Full Text] [Related]

  • 10. Effect of cyclopentaneglycine on metabolism in Salmonella typhimurium.
    O'Neill JP, Freundlich M.
    J Bacteriol; 1972 Aug; 111(2):510-5. PubMed ID: 4559733
    [Abstract] [Full Text] [Related]

  • 11. Synthesis of branced-chain aminoacyl-transfer ribonucleid acid synthetases in a Salmonella typhimurium mutant with an altered biosynthetic L-threonine deaminase.
    Arfin SM, Miner T, Hatfield GW.
    J Bacteriol; 1974 Nov; 120(2):604-7. PubMed ID: 4616939
    [Abstract] [Full Text] [Related]

  • 12. Growth rate modulation of four aminoacyl-transfer ribonucleic acid synthetases in enteric bacteria.
    McKeever WG, Neidhardt FC.
    J Bacteriol; 1976 May; 126(2):634-45. PubMed ID: 177401
    [Abstract] [Full Text] [Related]

  • 13. Metabolic regulation of the arginyl and valyl transfer ribonucleic acid synthetases in bacteria.
    Parker J, Flashner M, Mckeever WG, Neidhardt FC.
    J Biol Chem; 1974 Feb 25; 249(4):1044-53. PubMed ID: 4592258
    [No Abstract] [Full Text] [Related]

  • 14. [Regulation of the biosynthesis of branched aminoacyl tRNA synthetases in Bacillus cereus T].
    Raimond J.
    Biochimie; 1980 Feb 25; 62(10):727-32. PubMed ID: 6778511
    [Abstract] [Full Text] [Related]

  • 15. Separate regulation of transport and biosynthesis of leucine, isoleucine, and valine in bacteria.
    Quay SC, Oxender DL, Tsuyumu S, Umbarger HE.
    J Bacteriol; 1975 Jun 25; 122(3):994-1000. PubMed ID: 1097409
    [Abstract] [Full Text] [Related]

  • 16. Metabolic regulation of aminoacyl-tRNA synthetase formation in bacteria.
    Parker J, Neidhardt FC.
    Biochem Biophys Res Commun; 1972 Oct 17; 49(2):495-501. PubMed ID: 4565494
    [No Abstract] [Full Text] [Related]

  • 17. Improvement of substrate recognition in branched-chain aminoacyl-tRNA synthetases from Escherichia coli under conditions of pyrophosphate amplification.
    Nakatsuka-Mori T, Sato D, Aoki H.
    J Biosci Bioeng; 2022 May 17; 133(5):436-443. PubMed ID: 35216933
    [Abstract] [Full Text] [Related]

  • 18. Role of leucyl-tRNA synthetase in regulation of branched-chain amino-acid transport.
    Quay SC, Kline EL, Oxender DL.
    Proc Natl Acad Sci U S A; 1975 Oct 17; 72(10):3921-4. PubMed ID: 1105569
    [Abstract] [Full Text] [Related]

  • 19. Unusual valyl-transfer ribonucleic acid synthetase mutant of Escherichia coli.
    Anderson JJ, Neidhardt FC.
    J Bacteriol; 1972 Jan 17; 109(1):307-14. PubMed ID: 4550669
    [Abstract] [Full Text] [Related]

  • 20. Synthesis and activities of branched-chain aminoacyl-tRNA synthetases in threonine deaminase mutants of Escherichia coli.
    Williams AL, Whitfield SM, Williams LS.
    J Bacteriol; 1978 Apr 17; 134(1):92-9. PubMed ID: 348689
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.