These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
93 related items for PubMed ID: 494277
1. Dose and time relationships in manganese-bilirubin cholestasis. de Lamirande E, Plaa GL. Toxicol Appl Pharmacol; 1979 Jun 30; 49(2):257-63. PubMed ID: 494277 [No Abstract] [Full Text] [Related]
2. Potentiation by methyl isobutyl ketone of the cholestasis induced in rats by a manganese-bilirubin combination or manganese alone. Vézina M, Plaa GL. Toxicol Appl Pharmacol; 1987 Dec 30; 91(3):477-83. PubMed ID: 3424376 [Abstract] [Full Text] [Related]
6. Bilirubin as a cholestatic agent. IV. Effect of bilirubin and sulfobromophthalein (BSP) on biliary manganese excretion. Witzleben CL, Boyce WH. Arch Pathol; 1975 Sep 30; 99(9):496-8. PubMed ID: 1164253 [Abstract] [Full Text] [Related]
7. Effect of inhibition of protein synthesis on cholestasis induced by taurolithocholate, lithocholate, and a manganese-bilirubin combination in the rat. Dahlström-King L, Plaa GL. Biochem Pharmacol; 1989 Aug 01; 38(15):2543-9. PubMed ID: 2757652 [Abstract] [Full Text] [Related]
8. Role of manganese, bilirubin and sulfobromophthalein in manganese-bilirubin cholestasis in rats. Lamirande ED, Plaa GL. Proc Soc Exp Biol Med; 1978 Jun 01; 158(2):283-7. PubMed ID: 674234 [No Abstract] [Full Text] [Related]
11. Functional changes of the biliary tree associated with experimentally induced cholestasis: sulfobromophthalein on manganese-bilirubin combinations. Dahlström-King L, Couture J, Plaa GL. Toxicol Appl Pharmacol; 1991 May 01; 108(3):559-67. PubMed ID: 1902335 [Abstract] [Full Text] [Related]
12. Altered cholesterol synthesis as a mechanism involved in methyl isobutyl ketone-potentiated experimental cholestasis. Duguay A, Plaa GL. Toxicol Appl Pharmacol; 1997 Dec 01; 147(2):281-8. PubMed ID: 9439723 [Abstract] [Full Text] [Related]
13. The role of mdr2 in manganese-bilirubin induced cholestasis in mice. Akoume MY, Tuchweber B, Plaa GL, Yousef IM. Toxicol Lett; 2004 Mar 14; 148(1-2):41-51. PubMed ID: 15019087 [Abstract] [Full Text] [Related]
15. Manganese toxicity in children receiving long-term parenteral nutrition. Fell JM, Reynolds AP, Meadows N, Khan K, Long SG, Quaghebeur G, Taylor WJ, Milla PJ. Lancet; 1996 May 04; 347(9010):1218-21. PubMed ID: 8622451 [Abstract] [Full Text] [Related]
16. Physiologic and morphologic natural history of a model of intrahepatic cholestasis (manganese-bilirubin overload). Witzleben CL. Am J Pathol; 1972 Mar 04; 66(3):577-88. PubMed ID: 5060584 [Abstract] [Full Text] [Related]
17. Manganese-bilirubin cholestasis. Further studies in pathogenesis. Witzleben CL, Boyer JL, Ng OC. Lab Invest; 1987 Feb 04; 56(2):151-4. PubMed ID: 3807313 [Abstract] [Full Text] [Related]
18. Ketone potentiation of intrahepatic cholestasis: effect of two aliphatic isomers. Duguay AB, Plaa GL. J Toxicol Environ Health; 1997 Jan 04; 50(1):41-52. PubMed ID: 9015131 [Abstract] [Full Text] [Related]
19. Hepatocellular membrane alteration as a possible cause of manganese-bilirubin-induced cholestasis. de Lamirande E, Tuchweber B, Plaa GL. Biochem Pharmacol; 1981 Aug 15; 30(16):2305-12. PubMed ID: 6457605 [No Abstract] [Full Text] [Related]