These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


198 related items for PubMed ID: 4942773

  • 1. Evidence that the majority of leucine transfer ribonucleic acid is not involved in repression in Salmonella typhimurium.
    Freundlich M, Trela J, Peng W.
    J Bacteriol; 1971 Nov; 108(2):951-3. PubMed ID: 4942773
    [Abstract] [Full Text] [Related]

  • 2. flrB, a regulatory locus controlling branched-chain amino acid biosynthesis in Salmonella typhimurium.
    Friedberg D, Mikulka TW, Jones J, Calvo JM.
    J Bacteriol; 1974 Jun; 118(3):942-51. PubMed ID: 4598011
    [Abstract] [Full Text] [Related]

  • 3. Mutants of Salmonella typhimurium with an altered leucyl-transfer ribonucleic acid synthetase.
    Alexander RR, Calvo JM, Freundlich M.
    J Bacteriol; 1971 Apr; 106(1):213-20. PubMed ID: 4928008
    [Abstract] [Full Text] [Related]

  • 4. Control of isoleucine, valine, and leucine biosynthesis. VI. Effect of 5',5',5'-trifluoroleucine on repression in Salmonella typhimurium.
    Freundlich M, Trela JM.
    J Bacteriol; 1969 Jul; 99(1):101-6. PubMed ID: 4895839
    [Abstract] [Full Text] [Related]

  • 5. Effect of cyclopentaneglycine on metabolism in Salmonella typhimurium.
    O'Neill JP, Freundlich M.
    J Bacteriol; 1972 Aug; 111(2):510-5. PubMed ID: 4559733
    [Abstract] [Full Text] [Related]

  • 6. Derepressed levels of the isoleucine-valine and leucine enzymes in his T 1504, a strain of Salmonella typhimurium with altered leucine transfer ribonucleic acid.
    Rizzino AA, Bresalier RS, Freundlich M.
    J Bacteriol; 1974 Feb; 117(2):449-55. PubMed ID: 4359646
    [Abstract] [Full Text] [Related]

  • 7. Regulation of the tyrosine biosynthetic enzymes in Salmonella typhimurium: analysis of the involvement of tyrosyl-transfer ribonucleic acid and tyrosyl-transfer ribonucleic acid synthetase.
    Heinonen J, Artz SW, Zalkin H.
    J Bacteriol; 1972 Dec; 112(3):1254-63. PubMed ID: 4404819
    [Abstract] [Full Text] [Related]

  • 8. Regulation of synthesis of the aminoacyl-transfer ribonucleic acid synthetases for the branched-chain amino acids of Escherichia coli.
    McGinnis E, Williams LS.
    J Bacteriol; 1971 Oct; 108(1):254-62. PubMed ID: 4941558
    [Abstract] [Full Text] [Related]

  • 9. Role of histidine transfer ribonucleic acid in regulation of synthesis of histidyl-transfer ribonucleic acid synthetase of Salmonella typhimurium.
    McGinnis E, Williams LS.
    J Bacteriol; 1972 Feb; 109(2):505-11. PubMed ID: 4333605
    [Abstract] [Full Text] [Related]

  • 10. Reduced maximal levels of derepression of the isoleucine-valine and leucine enzymes in hisT mutants of Salmonella typhimurium.
    Bresalier RS, Rizzino AA, Freundlich M.
    Nature; 1975 Jan 24; 253(5489):279-80. PubMed ID: 1089896
    [No Abstract] [Full Text] [Related]

  • 11. Pleiotropy of hisT mutants blocked in pseudouridine synthesis in tRNA: leucine and isoleucine-valine operons.
    Cortese R, Landsberg R, Haar RA, Umbarger HE, Ames BN.
    Proc Natl Acad Sci U S A; 1974 May 24; 71(5):1857-61. PubMed ID: 4151955
    [Abstract] [Full Text] [Related]

  • 12. Synthesis of branced-chain aminoacyl-transfer ribonucleid acid synthetases in a Salmonella typhimurium mutant with an altered biosynthetic L-threonine deaminase.
    Arfin SM, Miner T, Hatfield GW.
    J Bacteriol; 1974 Nov 24; 120(2):604-7. PubMed ID: 4616939
    [Abstract] [Full Text] [Related]

  • 13. Multivalent repression and genetic depression of isoleucine-valine biosynthetic enzymes in Serratia marcescens.
    Kisumi M, Komatsubara S, Chibata I.
    J Bacteriol; 1971 Sep 24; 107(3):824-7. PubMed ID: 4937787
    [Abstract] [Full Text] [Related]

  • 14. Regulation of synthesis of the branched-chain amino acids and cognate aminoacyl-transfer ribonucleic acid synthetases of Escherichia coli: a common regulatory element.
    Jackson J, Williams LS, Umbarger HE.
    J Bacteriol; 1974 Dec 24; 120(3):1380-6. PubMed ID: 4612020
    [Abstract] [Full Text] [Related]

  • 15. Involvement of threonine deaminase in repression of the isoleucine-valine and leucine pathways in Saccharomyces cerevisiae.
    Bollon AP, Magee PT.
    J Bacteriol; 1973 Mar 24; 113(3):1333-44. PubMed ID: 4570783
    [Abstract] [Full Text] [Related]

  • 16. Two forms of biosynthetic acetohydroxy acid synthetase in Salmonella typhimurium.
    O'Neill JP, Freundlich M.
    Biochem Biophys Res Commun; 1972 Jul 25; 48(2):437-43. PubMed ID: 4557731
    [No Abstract] [Full Text] [Related]

  • 17. Derepression of synthesis of the aminoacyl-transfer ribonucleic acid synthetases for the branched-chain amino acids of Escherichia coli.
    McGinnis E, Williams AC, Williams LS.
    J Bacteriol; 1974 Aug 25; 119(2):554-9. PubMed ID: 4604302
    [Abstract] [Full Text] [Related]

  • 18. Histidine regulation in Salmonella typhimurium. IX. Histidine transfer ribonucleic acid of the regulatory mutants.
    Brenner M, Ames BN.
    J Biol Chem; 1972 Feb 25; 247(4):1080-8. PubMed ID: 4551510
    [No Abstract] [Full Text] [Related]

  • 19. Role of threonine deaminase in the regulation of isoleucine and valine biosynthesis.
    Levinthal M, Williams LS, Umbarger HE.
    Nat New Biol; 1973 Nov 21; 246(151):65-8. PubMed ID: 4586445
    [No Abstract] [Full Text] [Related]

  • 20. Effect of isoleucine, valine, or leucine starvation on the potential for formation of the branched-chain amino acid biosynthetic enzymes.
    Wasmuth JJ, Umbarger HE.
    J Bacteriol; 1973 Nov 21; 116(2):548-61. PubMed ID: 4200849
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.