These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


388 related items for PubMed ID: 4946921

  • 1. Movement of the ribosome along the messenger ribonucleic acid during protein synthesis.
    Gupta SL, Waterson J, Sopori ML, Weissman SM, Lengyel P.
    Biochemistry; 1971 Nov 23; 10(24):4410-21. PubMed ID: 4946921
    [No Abstract] [Full Text] [Related]

  • 2. Peptide chain elongation. Role of the S 1 factor in the pathway from S 3 -guanosine diphosphate complex to aminoacyl transfer ribonucleic acid-S 3 -guanosine triphosphate complex.
    Beaud G, Lengyel P.
    Biochemistry; 1971 Dec 21; 10(26):4899-906. PubMed ID: 4944063
    [No Abstract] [Full Text] [Related]

  • 3. Inability of E. coli ribosomes to interact simultaneously with the bacterial elongation factors EF Tu and EF G.
    Richter D.
    Biochem Biophys Res Commun; 1972 Mar 10; 46(5):1850-6. PubMed ID: 4552461
    [No Abstract] [Full Text] [Related]

  • 4. Studies on translocation of F-MET-tRNA and peptidyl-tRNA with antibiotics.
    Tanaka N, Lin YC, Okuyama A.
    Biochem Biophys Res Commun; 1971 Jul 16; 44(2):477-83. PubMed ID: 4946069
    [No Abstract] [Full Text] [Related]

  • 5. Requirement of an Escherichia coli 50 S ribosomal protein component for effective interaction of the ribosome with T and G factors and with guanosine triphosphate.
    Hamel E, Koka M, Nakamoto T.
    J Biol Chem; 1972 Feb 10; 247(3):805-14. PubMed ID: 4333515
    [No Abstract] [Full Text] [Related]

  • 6. Apparent changes in ribosome conformation during protein synthesis. Centrifugation at high speed distorts initiation, pretranslocaton, and posttranslocation complexes to a different extent.
    Waterson J, Sopori ML, Gupta SL, Lengyel P.
    Biochemistry; 1972 Apr 11; 11(8):1377-82. PubMed ID: 4553753
    [No Abstract] [Full Text] [Related]

  • 7. Chain initiation during polypeptide synthesis in cell-free bacterial systems programmed with a plant viral messenger. The formation of N-acetylphenylalanylisoleucyl-tRNA on the messenger-ribosome complex.
    Verhoef NJ, Lupker JH, Cornelissen MC, Bosch L.
    Virology; 1971 Jul 11; 45(1):85-90. PubMed ID: 4939455
    [No Abstract] [Full Text] [Related]

  • 8. Characterization of extended sequences around the coat and replicase cistron ribosome binding sites in phage Q RNA.
    Porter AG, Hindley J.
    FEBS Lett; 1972 Oct 01; 26(1):139-44. PubMed ID: 4564654
    [No Abstract] [Full Text] [Related]

  • 9. Studies on the nature of the G-factor binding site on the 50S ribosomal subunit.
    Bodley JW, Lin L.
    Biochemistry; 1972 Feb 29; 11(5):782-6. PubMed ID: 4551093
    [No Abstract] [Full Text] [Related]

  • 10. Protein synthesis with ribonuclease digested ribosomes.
    Kuechler E, Bauer K, Rich A.
    Biochim Biophys Acta; 1972 Sep 14; 277(3):615-27. PubMed ID: 4560817
    [No Abstract] [Full Text] [Related]

  • 11. The role of ribosomal conformation in protein synthesis: conformational changes in the ribosome during the tranlocation step.
    Chuang DM, Silberstein HA, Simpson MV.
    Arch Biochem Biophys; 1971 Jun 14; 144(2):778-80. PubMed ID: 4936516
    [No Abstract] [Full Text] [Related]

  • 12. On the movement of the ribosome along the messenger ribonucleic acid and on apparent changes in ribosome conformation during protein synthesis.
    Lengyel P, Gupta SL, Sopori ML, Waterson J, Weissman S.
    Basic Life Sci; 1973 Jun 14; 1():287-99. PubMed ID: 4589682
    [No Abstract] [Full Text] [Related]

  • 13. The binding of Q initiator fragments to E. coli ribosomes.
    Porter AG, Hindley J.
    FEBS Lett; 1973 Jul 15; 33(3):339-42. PubMed ID: 4580765
    [No Abstract] [Full Text] [Related]

  • 14. Studies on the formation of transfer ribonucleic acid-ribosome complexes. IV. Effect of antibiotics on steps of bacterial protein synthesis: some new ribosomal inhibitors of translocation.
    Pestka S, Brot N.
    J Biol Chem; 1971 Dec 25; 246(24):7715-22. PubMed ID: 4944317
    [No Abstract] [Full Text] [Related]

  • 15. Reconstitution of 50S ribosomal subunits from protein-free ribonucleic acid.
    Fahnestock S, Erdmann V, Nomura M.
    Biochemistry; 1973 Jan 16; 12(2):220-4. PubMed ID: 4682994
    [No Abstract] [Full Text] [Related]

  • 16. Formation of fusidic acid-G factor-GDP-ribosome complex and the relationship to the inhibition of GTP hydrolysis.
    Okura A, Kinoshita T, Tanaka N.
    J Antibiot (Tokyo); 1971 Oct 16; 24(10):655-61. PubMed ID: 4945809
    [No Abstract] [Full Text] [Related]

  • 17. The mode of action of fusidic acid.
    Cundliffe E.
    Biochem Biophys Res Commun; 1972 Mar 10; 46(5):1794-801. PubMed ID: 4622610
    [No Abstract] [Full Text] [Related]

  • 18. Characterization of the ribosome-dependent guanosine triphosphatase activity of polypeptide chain initiation factor IF 2.
    Dubnoff JS, Maitra U.
    J Biol Chem; 1972 May 10; 247(9):2876-83. PubMed ID: 4337107
    [No Abstract] [Full Text] [Related]

  • 19. The reactions of the sulfhydryl groups on the elongation factors Tu and Ts.
    Miller DL, Hachmann J, Weissbach H.
    Arch Biochem Biophys; 1971 May 10; 144(1):115-21. PubMed ID: 4940596
    [No Abstract] [Full Text] [Related]

  • 20. Properties of 30S ribosomal particles reconstituted from precursor 16S ribonucleic acid.
    Wireman JW, Sypherd PS.
    Biochemistry; 1974 Mar 12; 13(6):1215-21. PubMed ID: 4592471
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.