These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Mechanism of inhibition of protein synthesis by spiramycin. Ahmed A. Biochim Biophys Acta; 1968 Aug 23; 166(1):205-17. PubMed ID: 4972349 [No Abstract] [Full Text] [Related]
3. Studies on the reaction of N-acetyl-phenylalanyl-tRNA with puromycin. Weissbach H, Redfield B, Brot N. Arch Biochem Biophys; 1968 Sep 20; 127(1):705-10. PubMed ID: 4880552 [No Abstract] [Full Text] [Related]
4. Binding of N-acetylphenylalanyl tRNA to ribosomes--comparison with the binding of phenylalanyl tRNA. Suzuka I, Sekikawa K, Tanaka S. Arch Biochem Biophys; 1970 Feb 20; 136(2):430-5. PubMed ID: 4907877 [No Abstract] [Full Text] [Related]
5. Covalent attachment of a peptidyl-transfer RNA analog to the 50S subunit of Escherichia coli ribosomes. Pellegrini M, Oen H, Cantor CR. Proc Natl Acad Sci U S A; 1972 Apr 20; 69(4):837-41. PubMed ID: 4554533 [Abstract] [Full Text] [Related]
6. Specific binding of sRNA to ribosomes during polypeptide synthesis and the nature of peptidyl sRNA. Kuriki Y, Kaji A. J Mol Biol; 1967 May 14; 25(3):407-23. PubMed ID: 5340693 [No Abstract] [Full Text] [Related]
8. Anaerobiosis-induced changes in an isoleucyl transfer ribonucleic acid and the 50S ribosomes of Escherichia coli. Kwan CN, Apirion D, Schlessinger D. Biochemistry; 1968 Jan 14; 7(1):427-33. PubMed ID: 4921282 [No Abstract] [Full Text] [Related]
9. Binding of transfer ribonucleic acid to ribosomes. Comparison of the nonenzymatic binding of aminoacylated and deacylated transfer ribonucleic acid. Philipps GR. J Biol Chem; 1970 Feb 25; 245(4):859-68. PubMed ID: 4906638 [No Abstract] [Full Text] [Related]
10. Studies on the binding of phenylalanyl transfer RNA to rat-liver ribosomes. Siler J, Moldave K. Biochim Biophys Acta; 1969 Nov 19; 195(1):123-9. PubMed ID: 4901827 [No Abstract] [Full Text] [Related]
11. Role of 5S ribosomal RNA in polypeptide synthesis. Siddiqui MA, Hosokawa K. Biochem Biophys Res Commun; 1969 Aug 22; 36(5):711-20. PubMed ID: 4980101 [No Abstract] [Full Text] [Related]
12. Stabilization of N-acetylphenylalanyl transfer ribonucleic acid binding to ribosomes by sparsomycin. Herner AE, Goldberg IH, Cohen LB. Biochemistry; 1969 Apr 22; 8(4):1335-44. PubMed ID: 4896459 [No Abstract] [Full Text] [Related]
13. Coding properties of methyl-deficient phenylalanyl transfer ribonucleic acid from Escherichia coli. Stern R, Gonano F, Fleissner E, Littauer UZ. Biochemistry; 1970 Jan 06; 9(1):10-8. PubMed ID: 4903881 [No Abstract] [Full Text] [Related]
14. Factor- and guanosine 5'-triphosphate-dependent release of deacylated transfer RNA from 70S ribosomes. Kuriki Y, Kaji A. Proc Natl Acad Sci U S A; 1968 Dec 06; 61(4):1399-405. PubMed ID: 4884686 [No Abstract] [Full Text] [Related]
15. Binding of a natural template to Escherichia coli ribosomes in the presence of soluble RNA. Perzyński S, Szafrański P. Acta Biochim Pol; 1967 Dec 06; 14(3):361-8. PubMed ID: 4865108 [No Abstract] [Full Text] [Related]
16. Stepwise synthesis of a tripeptide. Haenni AL, Lucas-Lenard J. Proc Natl Acad Sci U S A; 1968 Dec 06; 61(4):1363-9. PubMed ID: 4884684 [No Abstract] [Full Text] [Related]
20. The activity of ribosomes whose RNA has been degraded by incubation in the presence or absence of oxidized glutathione. Furano AV, Harris MI. Biochim Biophys Acta; 1971 Oct 14; 247(2):291-303. PubMed ID: 4942461 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]