These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


243 related items for PubMed ID: 5002354

  • 1. Evidence for a two-directional hydrogen ion transport in chloroplasts of Euglena gracilis.
    Kahn JS.
    Biochim Biophys Acta; 1971 Aug 06; 245(1):144-50. PubMed ID: 5002354
    [No Abstract] [Full Text] [Related]

  • 2. Carbon dioxide fixation by isolated chloroplasts of Euglena gracilis. I. Isolation of functionally intact chloroplasts and their characterization.
    Forsee WT, Kahn JS.
    Arch Biochem Biophys; 1972 May 06; 150(1):296-301. PubMed ID: 4402152
    [No Abstract] [Full Text] [Related]

  • 3. Photophosphorylation as a function of light intensity.
    Saha S, Izawa S, Good NE.
    Biochim Biophys Acta; 1970 Nov 03; 223(1):158-64. PubMed ID: 5484049
    [No Abstract] [Full Text] [Related]

  • 4. Inhibition by dibromothymoquinone of photosynthetic electron transfer in chloroplasts of differing ultrastructure.
    Bishop DG, Nolan WG.
    Arch Biochem Biophys; 1975 Jun 03; 168(2):594-600. PubMed ID: 806266
    [No Abstract] [Full Text] [Related]

  • 5. The effect of cycloheximide on membrane transport in Euglena. A comparative study with nigericin.
    Evans WR.
    J Biol Chem; 1971 Oct 25; 246(20):6144-51. PubMed ID: 5001786
    [No Abstract] [Full Text] [Related]

  • 6. K+-independent effects of valinomycin in photosynthetic systems.
    Keister DL, Minton NJ.
    J Bioenerg; 1970 Oct 25; 1(4):367-77. PubMed ID: 4274115
    [No Abstract] [Full Text] [Related]

  • 7. ATP synthesis driven by a K+-valinomycin-induced charge imbalance across chloroplast grana membranes.
    Uribe EG.
    FEBS Lett; 1973 Oct 15; 36(2):143-7. PubMed ID: 4754261
    [No Abstract] [Full Text] [Related]

  • 8. Stimulation and inhibition of membrane-dependent ATP synthesis in chloroplasts by artificially induced K+ gradients.
    Uribe EG, Li BC.
    J Bioenerg; 1973 Oct 15; 4(4):435-44. PubMed ID: 4723531
    [No Abstract] [Full Text] [Related]

  • 9. Evidence for chemiosmotic coupling of electron transport to ATP synthesis in spinach chloroplasts.
    Telfer A, Evans MC.
    Biochim Biophys Acta; 1972 Mar 16; 256(3):625-37. PubMed ID: 5020234
    [No Abstract] [Full Text] [Related]

  • 10. Localization of the reaction site of cytochrome 552 in chloroplasts from Euglena gracilis. Cytochrome content and photooxidation in different chloroplast preparations.
    Wildner GF, Hauska G.
    Arch Biochem Biophys; 1974 Sep 16; 164(1):127-35. PubMed ID: 4154724
    [No Abstract] [Full Text] [Related]

  • 11. Photophosphorylation by isolated chloroplasts of Euglena gracilis.
    Kahn JS.
    Biochem Biophys Res Commun; 1966 Aug 12; 24(3):329-33. PubMed ID: 5967093
    [No Abstract] [Full Text] [Related]

  • 12. The site of inhibition of photosynthetic electron transfer by amphotericin B.
    Nolan WG, Bishop DG.
    Arch Biochem Biophys; 1975 Jan 12; 166(1):323-9. PubMed ID: 235895
    [No Abstract] [Full Text] [Related]

  • 13. Oxygen activation by isolated chloroplasts from Euglena gracilis. Ferredoxin-dependent function of a fluorescent compound and photosynthetic electron transport close to photosystem.
    Elstner EF, Wildner GF, Heupel A.
    Arch Biochem Biophys; 1976 Apr 12; 173(2):623-30. PubMed ID: 179469
    [No Abstract] [Full Text] [Related]

  • 14. Localization of the reaction site of cytochrome 552 in chloroplasts from Euglena gracilis. Effects of a specific antibody on endogenous, external and reincorporated cytochrome 552 in chloroplast membranes.
    Wildner GF, Hauska G.
    Arch Biochem Biophys; 1974 Sep 12; 164(1):136-44. PubMed ID: 4154725
    [No Abstract] [Full Text] [Related]

  • 15. Stimulation of ATP synthesis by a membrane potential in chloroplasts.
    Schuldiner S, Rottenberg H, Avron M.
    Eur J Biochem; 1973 Nov 15; 39(2):455-62. PubMed ID: 4129992
    [No Abstract] [Full Text] [Related]

  • 16. Studies on electron transport associated with photosystem I. 3. The reduction sites of various Hill oxidants in the photosynthetic electron transport system.
    Kimimura M, Kato S.
    Biochim Biophys Acta; 1973 Oct 19; 325(1):167-74. PubMed ID: 4203736
    [No Abstract] [Full Text] [Related]

  • 17. Photophosphorylation in digitonin subchloroplast particles. Absence of a light-induced pH shift.
    Nelson N, Drechsler Z, Neumann J.
    J Biol Chem; 1970 Jan 10; 245(1):143-51. PubMed ID: 5411541
    [No Abstract] [Full Text] [Related]

  • 18. Effect of hydrocarbon chain length on the uncoupling of photophosphorylation by amines.
    McCarty RE, Coleman CH.
    Arch Biochem Biophys; 1970 Nov 10; 141(1):198-206. PubMed ID: 4249244
    [No Abstract] [Full Text] [Related]

  • 19. Localization of photophosphorylation and proton transport activities in various regions of the chloroplast lamellae.
    Arntzen CJ, Dilley RA, Neumann J.
    Biochim Biophys Acta; 1971 Sep 07; 245(2):409-24. PubMed ID: 4400794
    [No Abstract] [Full Text] [Related]

  • 20. Kinetics of ATP formation and proton efflux by acid-base transition in chloroplasts.
    Nishizaki Y.
    Biochim Biophys Acta; 1973 Sep 26; 314(3):312-9. PubMed ID: 4751232
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.