These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


81 related items for PubMed ID: 5071879

  • 1. The pH dependence of exchange transport of glucose in human erythrocytes.
    Lacko L, Wittke B, Geck P.
    J Cell Physiol; 1972 Aug; 80(1):73-8. PubMed ID: 5071879
    [No Abstract] [Full Text] [Related]

  • 2. Transfer of inorganic phosphate across human erythrocyte membranes.
    Schrier SL.
    J Lab Clin Med; 1970 Mar; 75(3):422-34. PubMed ID: 4313673
    [No Abstract] [Full Text] [Related]

  • 3. [pH-dependence of the transport of D(+) glucose through the human erythrocyte membrane].
    Bolis L, Elia M, Luly P, Wilbrandt W.
    Boll Chim Farm; 1969 Apr; 108(4):211-6. PubMed ID: 5806411
    [No Abstract] [Full Text] [Related]

  • 4. A comprehensive model of human erythrocyte metabolism: extensions to include pH effects.
    Lee ID, Palsson BO.
    Biomed Biochim Acta; 1990 Apr; 49(8-9):771-89. PubMed ID: 2082921
    [Abstract] [Full Text] [Related]

  • 5. Inhibition of glucose transport in human erythrocytes by benzylalcohol.
    Lacko L, Wittke B, Lacko I.
    J Cell Physiol; 1978 Aug; 96(2):199-201. PubMed ID: 27526
    [Abstract] [Full Text] [Related]

  • 6. Interaction of chlorpromazine with the transport system of glucose in human erythrocytes.
    Lacko L, Wittke B, Lacko I.
    Arzneimittelforschung; 1980 Aug; 30(11):1852-5. PubMed ID: 7192992
    [Abstract] [Full Text] [Related]

  • 7. Evidence of high stability of the glucose transport carrier function in human red cell ghosts extensively washed in various media.
    Jung CY.
    Arch Biochem Biophys; 1971 Sep; 146(1):215-26. PubMed ID: 5004123
    [No Abstract] [Full Text] [Related]

  • 8. [Significance and regulation of the pentosephosphate pathway in human erythrocytes].
    Brand K, Arese P, Rivera M.
    Hoppe Seylers Z Physiol Chem; 1970 Mar; 351(3):281. PubMed ID: 4392986
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Glucose transport carrier activities in extensively washed human red cell ghosts.
    Jung CY, Carlson LM, Whaley DA.
    Biochim Biophys Acta; 1971 Aug 13; 241(2):613-27. PubMed ID: 5159799
    [No Abstract] [Full Text] [Related]

  • 11. Na(+)-H+ and Na(+)-Li+ exchange are mediated by the same membrane transport protein in human red blood cells: an NMR investigation.
    Chi Y, Mo S, Mota de Freitas D.
    Biochemistry; 1996 Sep 24; 35(38):12433-42. PubMed ID: 8823178
    [Abstract] [Full Text] [Related]

  • 12. [Glycolysis of human erythrocytes and permeability to orthophosphate ions].
    Cartier P, Chedru J.
    Bull Soc Chim Biol (Paris); 1966 Sep 24; 48(12):1421-37. PubMed ID: 5982799
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Phosphate transport across brush border and basolateral membrane vesicles of small intestine.
    Danisi G, van Os CH, Straub RW.
    Prog Clin Biol Res; 1984 Sep 24; 168():229-34. PubMed ID: 6514734
    [No Abstract] [Full Text] [Related]

  • 16. A new approach for determining red cell life span by incorporating C 14 -glucose into glycosphingolipids of membrane.
    Krivit W.
    J Lab Clin Med; 1971 Oct 24; 78(4):656-63. PubMed ID: 5114058
    [No Abstract] [Full Text] [Related]

  • 17. A simple resolution of the kinetic anomaly in the exchange of different sugars across the membrane of the human red blood cell.
    Eilam Y, Stein WD.
    Biochim Biophys Acta; 1972 Apr 14; 266(1):161-73. PubMed ID: 5041086
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.