These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


121 related items for PubMed ID: 509234

  • 41.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 42. Estimation of the apparent affinity of the striatal dopamine receptors for the radioligand[3H]spiperone [( 3H]spiroperidol).
    Hruska RE.
    J Neurosci Res; 1984; 12(4):571-81. PubMed ID: 6512888
    [Abstract] [Full Text] [Related]

  • 43.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 44. Selective binding of YM-09151-2, a new potent neuroleptic, to D2-dopaminergic receptors.
    Terai M, Usuda S, Kuroiwa I, Noshiro O, Maeno H.
    Jpn J Pharmacol; 1983 Aug; 33(4):749-55. PubMed ID: 6138453
    [Abstract] [Full Text] [Related]

  • 45.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 46. Effects of chronic haloperidol on caudate 3H-spiroperidol binding in lesioned rats.
    Rosenblatt JE, Shore D, Neckers LM, Perlow MJ, Freed WJ, Wyatt RJ.
    Eur J Pharmacol; 1979 Dec 20; 60(4):387-8. PubMed ID: 93551
    [No Abstract] [Full Text] [Related]

  • 47. Distinctions between ligand-binding sites for [3H]dopamine and D2 dopaminergic receptors characterized with [3H]spiroperidol.
    Hancock AA, Marsh CL.
    Mol Pharmacol; 1984 Nov 20; 26(3):439-51. PubMed ID: 6238230
    [Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49. Effect of chronic amphetamine administration on central dopaminergic mechanisms in the vervet.
    Owen F, Baker HF, Ridley RM, Cross AJ, Crow TJ.
    Psychopharmacology (Berl); 1981 Nov 20; 74(3):213-6. PubMed ID: 6791228
    [Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52. [3H]spiroperidol identifies a D-2 dopamine receptor inhibiting adenylate cyclase activity in the intermediate lobe of the rat pituitary gland.
    Frey EA, Cote TE, Grewe CW, Kebabian JW.
    Endocrinology; 1982 Jun 20; 110(6):1897-904. PubMed ID: 7075543
    [Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55. Dopamine receptor changes following destruction of the nigrostriatal pathway: lack of a relationship to rotational behavior.
    Staunton DA, Wolfe BB, Groves PM, Molinoff PB.
    Brain Res; 1981 May 04; 211(2):315-27. PubMed ID: 7237126
    [Abstract] [Full Text] [Related]

  • 56. Deafferentation elicits increased dopamine-sensitive adenylate cyclase and receptor binding in the olfactory tubercle.
    Lingham RB, Gottesfeld Z.
    J Neurosci; 1986 Aug 04; 6(8):2208-14. PubMed ID: 3091783
    [Abstract] [Full Text] [Related]

  • 57.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 58. Studies on the origin of rat hippocampal dihydroxyphenylacetic acid using microdialysis.
    Vahabzadeh A, Fillenz M.
    Neurosci Lett; 1992 Feb 17; 136(1):51-5. PubMed ID: 1353258
    [Abstract] [Full Text] [Related]

  • 59. Chronic lead treatment differentially affects dopamine synthesis in various rat brain areas.
    Govoni S, Memo M, Spano PF, Trabucchi M.
    Toxicology; 1979 Feb 17; 12(3):343-9. PubMed ID: 494315
    [Abstract] [Full Text] [Related]

  • 60. Serotonin-elicited amplification of adenylate cyclase activity in hippocampal membranes from adult rat.
    Barbaccia ML, Brunello N, Chuang DM, Costa E.
    J Neurochem; 1983 Jun 17; 40(6):1671-9. PubMed ID: 6854325
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.