These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


124 related items for PubMed ID: 5105302

  • 21. Ionized calcium requirement of rumen cellulolytic bacteria.
    Morales MS, Dehority BA.
    J Dairy Sci; 2009 Oct; 92(10):5079-91. PubMed ID: 19762826
    [Abstract] [Full Text] [Related]

  • 22. A cellulolytic rumen bacterium, Micromonospora ruminantium sp.nov.
    Maluszyńska GM, Janota-Bassalik L.
    J Gen Microbiol; 1974 May; 82(1):57-65. PubMed ID: 4850160
    [No Abstract] [Full Text] [Related]

  • 23. Interactions of microbial populations in cellulose fermentation.
    Wolin MJ, Miller TL.
    Fed Proc; 1983 Jan; 42(1):109-13. PubMed ID: 6848372
    [Abstract] [Full Text] [Related]

  • 24. Factors affecting cellulolysis by Ruminococcus albus.
    Smith WR, Yu I, Hungate RE.
    J Bacteriol; 1973 May; 114(2):729-37. PubMed ID: 4735890
    [Abstract] [Full Text] [Related]

  • 25. Improved animal production by genetic engineering of ruminal bacteria.
    Brooker JD, Thomson AM, Ward H.
    Australas Biotechnol; 1992 Oct; 2(5):288-91. PubMed ID: 1368926
    [Abstract] [Full Text] [Related]

  • 26. The effect of media changes on the rate of cellulose solubilisation by rumen and digester derived microbial communities.
    O'Sullivan CA, Burrell PC.
    Waste Manag; 2007 Oct; 27(12):1808-14. PubMed ID: 17161596
    [Abstract] [Full Text] [Related]

  • 27. Defined bacterial populations in the rumens of gnotobiotic lambs.
    Lysons RJ, Alexander TJ, Wellstead PD, Hobson PN, Mann SO, Stewart CS.
    J Gen Microbiol; 1976 Jun; 94(2):257-69. PubMed ID: 950552
    [Abstract] [Full Text] [Related]

  • 28. Decomposition of pectin in vitro by pure strains of rumen bacteria.
    Tomerska H.
    Acta Microbiol Pol B; 1971 Jun; 3(2):107-15. PubMed ID: 4935386
    [No Abstract] [Full Text] [Related]

  • 29. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH?
    Russell JB, Wilson DB.
    J Dairy Sci; 1996 Aug; 79(8):1503-9. PubMed ID: 8880476
    [Abstract] [Full Text] [Related]

  • 30. Invited review: adhesion mechanisms of rumen cellulolytic bacteria.
    Miron J, Ben-Ghedalia D, Morrison M.
    J Dairy Sci; 2001 Jun; 84(6):1294-309. PubMed ID: 11417686
    [Abstract] [Full Text] [Related]

  • 31. Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms in vitro.
    Mouriño F, Akkarawongsa R, Weimer PJ.
    J Dairy Sci; 2001 Apr; 84(4):848-59. PubMed ID: 11352162
    [Abstract] [Full Text] [Related]

  • 32. Role of rumen protozoa in the digestion of food cellulosic materials.
    Jouany JP, Senaud J.
    Ann Rech Vet; 1979 Apr; 10(2-3):261-3. PubMed ID: 119468
    [No Abstract] [Full Text] [Related]

  • 33. Growth factor requirements of ruminal cellulolytic bacteria isolated from microbial populations supplied diets with or without rapidly fermentable carbohydrate.
    Slyter LL, Weaver JM.
    Appl Microbiol; 1971 Nov; 22(5):930-2. PubMed ID: 5167214
    [Abstract] [Full Text] [Related]

  • 34. Quantification by real-time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: effect of a yeast additive.
    Mosoni P, Chaucheyras-Durand F, Béra-Maillet C, Forano E.
    J Appl Microbiol; 2007 Dec; 103(6):2676-85. PubMed ID: 18045448
    [Abstract] [Full Text] [Related]

  • 35. Long-term defaunation increases the abundance of cellulolytic ruminococci and methanogens but does not affect the bacterial and methanogen diversity in the rumen of sheep.
    Mosoni P, Martin C, Forano E, Morgavi DP.
    J Anim Sci; 2011 Mar; 89(3):783-91. PubMed ID: 21346137
    [Abstract] [Full Text] [Related]

  • 36. Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose.
    Callaway ES, Martin SA.
    J Dairy Sci; 1997 Sep; 80(9):2035-44. PubMed ID: 9313145
    [Abstract] [Full Text] [Related]

  • 37. Production of oligosaccharides and cellobionic acid by Fibrobacter succinogenes S85 growing on sugars, cellulose and wheat straw.
    Nouaille R, Matulova M, Pätoprstý V, Delort AM, Forano E.
    Appl Microbiol Biotechnol; 2009 Jun; 83(3):425-33. PubMed ID: 19184595
    [Abstract] [Full Text] [Related]

  • 38. Hemicellulose degradation by rumen bacteria.
    Dehority BA.
    Fed Proc; 1973 Jul; 32(7):1819-25. PubMed ID: 4718900
    [No Abstract] [Full Text] [Related]

  • 39. Effects of beta-carotene and alpha-tocopherol on rumen bacteria in the utilization of long-chain fatty acids and cellulose.
    Hino T, Andoh N, Ohgi H.
    J Dairy Sci; 1993 Feb; 76(2):600-5. PubMed ID: 8445103
    [Abstract] [Full Text] [Related]

  • 40. Physical form of the diet in relation to rumen fermentation.
    Thomson DJ.
    Proc Nutr Soc; 1972 Sep; 31(2):127-34. PubMed ID: 4563286
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.