These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


126 related items for PubMed ID: 512204

  • 1. Comparison of the spectra of the cochlear microphonic and of the sound-elicited electrical impedance changes measured in scala media of the guinea pig.
    Hubbard AE, Geisler CD, Mountain DC.
    J Acoust Soc Am; 1979 Aug; 66(2):431-45. PubMed ID: 512204
    [Abstract] [Full Text] [Related]

  • 2. Voltage-dependent elements are involved in the generation of the cochlear microphonic and the sound-induced resistance changes measured in scala media of the guinea pig.
    Mountain DC, Hubbard AE, Geisler CD.
    Hear Res; 1980 Oct; 3(3):215-29. PubMed ID: 7440425
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Two-tone interactions in the cochlear microphonic.
    Cheatham MA, Dallos P.
    Hear Res; 1982 Sep; 8(1):29-48. PubMed ID: 7142031
    [Abstract] [Full Text] [Related]

  • 6. Changes in cochlear microphonic and neural sensitivity produced by acoustic trauma.
    Patuzzi RB, Yates GK, Johnstone BM.
    Hear Res; 1989 May; 39(1-2):189-202. PubMed ID: 2737965
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. DC potentials of the lateral wall of the scala media.
    Urquiza R, Diez de los Rios A.
    Arch Otorhinolaryngol; 1987 May; 244(2):96-9. PubMed ID: 3662931
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Cochlear microphonic evidence for mechanical propagation of distortion products (f2 - f1) and (2f1 - f2).
    Gibian GL, Kim DO.
    Hear Res; 1982 Jan; 6(1):35-59. PubMed ID: 7054135
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. The responses of inner hair cells to basilar membrane velocity during low frequency auditory stimulation in the guinea pig cochlea.
    Sellick PM, Russell IJ.
    Hear Res; 1980 Jun; 2(3-4):439-45. PubMed ID: 7410248
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Influence of direct current on dc receptor potentials from cochlear inner hair cells in the guinea pig.
    Nuttall AL.
    J Acoust Soc Am; 1985 Jan; 77(1):165-75. PubMed ID: 3973211
    [Abstract] [Full Text] [Related]

  • 18. Automatic monitoring of mechano-electrical transduction in the guinea pig cochlea.
    Patuzzi R, Moleirinho A.
    Hear Res; 1998 Nov; 125(1-2):1-16. PubMed ID: 9833960
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Pressure-induced basilar membrane position shifts and the stimulus-evoked potentials in the low-frequency region of the guinea pig cochlea.
    Fridberger A, van Maarseveen JT, Scarfone E, Ulfendahl M, Flock B, Flock A.
    Acta Physiol Scand; 1997 Oct; 161(2):239-52. PubMed ID: 9366967
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.