These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


104 related items for PubMed ID: 5141136

  • 1. Investigations on the existence of a specific retention of D-glucose by the human erythrocyte membrane.
    Moller JV.
    Biochim Biophys Acta; 1971 Oct 12; 249(1):96-100. PubMed ID: 5141136
    [No Abstract] [Full Text] [Related]

  • 2. Preferential uptake of D-glucose by isolated human erythrocyte membranes.
    Kahlenberg A, Urman B, Dolansky D.
    Biochemistry; 1971 Aug 03; 10(16):3154-62. PubMed ID: 5126931
    [No Abstract] [Full Text] [Related]

  • 3. Effect of phloretin on monosaccharide transport in erythrocyte ghosts.
    Benes I, Kolínská J, Kotyk A.
    J Membr Biol; 1972 Aug 03; 8(3):303-9. PubMed ID: 5084118
    [No Abstract] [Full Text] [Related]

  • 4. Structural requirements of D-glucose for its binding to isolated human erythrocyte membranes.
    Kahlenberg A, Dolansky D.
    Can J Biochem; 1972 Jun 03; 50(6):638-43. PubMed ID: 5042872
    [No Abstract] [Full Text] [Related]

  • 5. The role of unstirred layers in control of sugar movements across red cell membranes.
    Naftalin RJ.
    Biochim Biophys Acta; 1971 Jun 01; 233(3):635-43. PubMed ID: 5113922
    [No Abstract] [Full Text] [Related]

  • 6. Sulfhydryl reagents and lecithin binding to butanol-extracted membranes.
    Green FA.
    Chem Phys Lipids; 1973 May 01; 10(4):309-17. PubMed ID: 4741208
    [No Abstract] [Full Text] [Related]

  • 7. An alternative to the carrier model for sugar transport across red cell membranes.
    Naftalin RJ.
    Biomembranes; 1972 May 01; 3():117-26. PubMed ID: 4666509
    [No Abstract] [Full Text] [Related]

  • 8. Glucose transport in white erythrocyte ghosts and membrane-derived vesicles.
    Taverna RD, Langdon RG.
    Biochim Biophys Acta; 1973 Mar 16; 298(2):422-8. PubMed ID: 4719139
    [No Abstract] [Full Text] [Related]

  • 9. Failure of equilibrium dialysis to show selective monosaccharide binding by erythrocyte membranes.
    Masiak SJ, LeFevre PG.
    J Membr Biol; 1972 Mar 16; 9(3):291-6. PubMed ID: 5085304
    [No Abstract] [Full Text] [Related]

  • 10. Anomalous transport kinetics and the glucose carrier hypothesis.
    Regen DM, Tarpley HL.
    Biochim Biophys Acta; 1974 Mar 15; 339(2):218-33. PubMed ID: 4827852
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Membrane transport of sugars in the rat lens.
    Elbrink J, Bihler I.
    Can J Ophthalmol; 1972 Jan 15; 7(1):96-101. PubMed ID: 5057954
    [No Abstract] [Full Text] [Related]

  • 18. Effects of phlorizin on net chloride movements across the valinomycin-treated erythrocyte membrane.
    Kaplan JH, Passow H.
    J Membr Biol; 1974 Jan 15; 19(1):179-94. PubMed ID: 4431040
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Human erythrocyte sugar transport. Kinetic evidence for an asymmetric carrier.
    Bloch R.
    J Biol Chem; 1974 Jun 10; 249(11):3543-50. PubMed ID: 4831229
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.