These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Chondroitin sulfate and electron lucent bodies in the pericellular rim about unshrunken hypertrophied chondrocytes of chick long bone. Kashiwa HK, Luchtel DL, Park HZ. Anat Rec; 1975 Nov; 183(3):359-72. PubMed ID: 54007 [Abstract] [Full Text] [Related]
4. A comparison of the morphological, histochemical and biochemical features of embryonic chick sternal chondrocytes in vivo with chondrocytes cultured in three-dimensional collagen gels. McClure J, Bates GP, Rowston H, Grant ME. Bone Miner; 1988 Jan; 3(3):235-47. PubMed ID: 3061535 [Abstract] [Full Text] [Related]
5. In vitro differentiation potential of the periosteal cells from a membrane bone, the quadratojugal of the embryonic chick. Fang J, Hall BK. Dev Biol; 1996 Dec 15; 180(2):701-12. PubMed ID: 8954738 [Abstract] [Full Text] [Related]
17. Skeletogenesis in insulin-treated chick embryos. II. Histochemical observations, with particular reference to the tibiotarsus. Rabinovitch AL, Gibson MA. Teratology; 1972 Aug 15; 6(1):51-69. PubMed ID: 4262523 [No Abstract] [Full Text] [Related]
18. Properties of cultured chondrocytes obtained from histologically distinct zones of the chick embryo tibiotarsus. Kim JJ, Conrad HE. J Biol Chem; 1977 Nov 25; 252(22):8292-9. PubMed ID: 914872 [No Abstract] [Full Text] [Related]
19. In vitro differentiation of mouse embryo chondrocytes: requirement for ascorbic acid. Dozin B, Quarto R, Campanile G, Cancedda R. Eur J Cell Biol; 1992 Aug 25; 58(2):390-4. PubMed ID: 1425775 [Abstract] [Full Text] [Related]