These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
186 related items for PubMed ID: 529046
1. Sustained drug delivery systems II: Factors affecting release rates from poly(epsilon-caprolactone) and related biodegradable polyesters. Pitt CG, Gratzl MM, Jeffcoat AR, Zweidinger R, Schindler A. J Pharm Sci; 1979 Dec; 68(12):1534-8. PubMed ID: 529046 [Abstract] [Full Text] [Related]
6. Biodegradable polyesters for controlled release of trypanocidal drugs: in vitro and in vivo studies. Lemmouchi Y, Schacht E, Kageruka P, De Deken R, Diarra B, Diall O, Geerts S. Biomaterials; 1998 Oct; 19(20):1827-37. PubMed ID: 9855183 [Abstract] [Full Text] [Related]
7. The characterization of paclitaxel-loaded microspheres manufactured from blends of poly(lactic-co-glycolic acid) (PLGA) and low molecular weight diblock copolymers. Jackson JK, Hung T, Letchford K, Burt HM. Int J Pharm; 2007 Sep 05; 342(1-2):6-17. PubMed ID: 17555895 [Abstract] [Full Text] [Related]
8. Recent Advances in Application of Poly-Epsilon-Caprolactone and its Derivative Copolymers for Controlled Release of Anti-Tumor Drugs. Sun Z, Duan R, Xing D, Pang X, Li Z, Chen X. Curr Cancer Drug Targets; 2017 Sep 05; 17(5):445-455. PubMed ID: 28067177 [Abstract] [Full Text] [Related]
10. Effect of the molecular weight of poly(epsilon-caprolactone-co-DL-lactide) on toremifene citrate release from copolymer/silica xerogel composites. Rich J, Kortesuo P, Ahola M, Yli-Urpo A, Kiesvaara J, Seppälä J. Int J Pharm; 2001 Jan 05; 212(1):121-30. PubMed ID: 11165827 [Abstract] [Full Text] [Related]
11. Optimized polymer coating for magnesium alloy-based bioresorbable scaffolds for long-lasting drug release and corrosion resistance. Xu W, Yagoshi K, Koga Y, Sasaki M, Niidome T. Colloids Surf B Biointerfaces; 2018 Mar 01; 163():100-106. PubMed ID: 29284158 [Abstract] [Full Text] [Related]
12. Biodegradable drug delivery systems based on aliphatic polyesters: application to contraceptives and narcotic antagonists. Pitt CG, Marks TA, Schindler A. NIDA Res Monogr; 1981 Mar 01; 28():232-53. PubMed ID: 6791007 [Abstract] [Full Text] [Related]
15. A poly(ε-caprolactone) device for sustained release of an anti-glaucoma drug. Natu MV, Gaspar MN, Ribeiro CA, Correia IJ, Silva D, de Sousa HC, Gil MH. Biomed Mater; 2011 Apr 01; 6(2):025003. PubMed ID: 21293056 [Abstract] [Full Text] [Related]
16. Feasibility of poly (ϵ-caprolactone-co-DL-lactide) as a biodegradable material for in situ forming implants: evaluation of drug release and in vivo degradation. Zhang X, Zhang C, Zhang W, Meng S, Liu D, Wang P, Guo J, Li J, Guan Y, Yang D. Drug Dev Ind Pharm; 2015 Feb 01; 41(2):342-52. PubMed ID: 24320881 [Abstract] [Full Text] [Related]
17. Polyester-based microparticles of different hydrophobicity: the patterns of lipophilic drug entrapment and release. Korzhikov V, Averianov I, Litvinchuk E, Tennikova TB. J Microencapsul; 2016 May 01; 33(3):199-208. PubMed ID: 26888064 [Abstract] [Full Text] [Related]
18. Bilayer tablets based on poly (epsilon-caprolactone) and polymethylmethacrilates as controlled-release systems for ruminants. Sanna V, Gavini E, Giunchedi P. Pharm Dev Technol; 2004 Aug 01; 9(3):321-8. PubMed ID: 15458237 [Abstract] [Full Text] [Related]