These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


129 related items for PubMed ID: 5305788

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Suphur metabolism in Thiorhodaceae. 3. Storage and turnover of thiosulphate sulphur in Thiocapsa floridana and Chromatium species.
    Trüper HG, Pfennig N.
    Antonie Van Leeuwenhoek; 1966; 32(3):261-76. PubMed ID: 5296712
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Influence of the redox potential on the activity of Clostridium pasteurianum and Chromatium hydrogenases.
    Fernandez VM, Munilla R, Ballesteros A.
    Arch Biochem Biophys; 1982 Apr 15; 215(1):129-35. PubMed ID: 7046637
    [No Abstract] [Full Text] [Related]

  • 6. Pyridine nucleotide transhydrogenase from Chromatium.
    Keister DL, Hemmes RB.
    J Biol Chem; 1966 Jun 25; 241(12):2820-5. PubMed ID: 4380404
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Enzymic comparisons of the inorganic sulfur metabolism in autotrophic and heterotrophic Thiobacillus ferrooxidans.
    Tuovinen PH, Kelley BC, Nicholas DJ.
    Can J Microbiol; 1976 Jan 25; 22(1):109-13. PubMed ID: 175905
    [Abstract] [Full Text] [Related]

  • 12. Cytochrome b and photosynthetic sulfur bacteria.
    Knaff DB, Buchanan BB.
    Biochim Biophys Acta; 1975 Mar 20; 376(3):549-60. PubMed ID: 1125222
    [Abstract] [Full Text] [Related]

  • 13. Redox potentials of flavocytochromes c from the phototrophic bacteria, Chromatium vinosum and Chlorobium thiosulfatophilum.
    Meyer TE, Bartsch RG, Caffrey MS, Cusanovich MA.
    Arch Biochem Biophys; 1991 May 15; 287(1):128-34. PubMed ID: 1654798
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Isolation and characterization of soluble electron transfer proteins from Chromatium purpuratum.
    Kerfeld CA, Chan C, Hirasawa M, Kleis-SanFrancisco S, Yeates TO, Knaff DB.
    Biochemistry; 1996 Jun 18; 35(24):7812-8. PubMed ID: 8672482
    [Abstract] [Full Text] [Related]

  • 16. Utilization of reducing power in growing cultures of Chromatium.
    van Gemerden H.
    Arch Mikrobiol; 1968 Jun 18; 64(2):111-7. PubMed ID: 5709372
    [No Abstract] [Full Text] [Related]

  • 17. On the ATP generation by Chromatium in darkness.
    van Gemerden H.
    Arch Mikrobiol; 1968 Jun 18; 64(2):118-24. PubMed ID: 5709373
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. The nitrogen fixation system of photosynthetic bacteria. II. Chromatium nitrogenase activity linked to photochemically generated assimilatory power.
    Yoch DC, Arnon DI.
    Biochim Biophys Acta; 1970 Mar 03; 197(2):180-4. PubMed ID: 5416108
    [No Abstract] [Full Text] [Related]

  • 20. Genes involved in hydrogen and sulfur metabolism in phototrophic sulfur bacteria.
    Dahl C, Rákhely G, Pott-Sperling AS, Fodor B, Takács M, Tóth A, Kraeling M, Gy"orfi K, Kovács A, Tusz J, Kovács KL.
    FEMS Microbiol Lett; 1999 Nov 15; 180(2):317-24. PubMed ID: 10556728
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.