These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


129 related items for PubMed ID: 5305788

  • 41.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 42. Microbial oxidative sulfur metabolism: biochemical evidence of the membrane-bound heterodisulfide reductase-like complex of the bacterium Aquifex aeolicus.
    Boughanemi S, Lyonnet J, Infossi P, Bauzan M, Kosta A, Lignon S, Giudici-Orticoni MT, Guiral M.
    FEMS Microbiol Lett; 2016 Aug; 363(15):. PubMed ID: 27284018
    [Abstract] [Full Text] [Related]

  • 43. Prokaryotic sulfur oxidation.
    Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J.
    Curr Opin Microbiol; 2005 Jun; 8(3):253-9. PubMed ID: 15939347
    [Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45. Thiorhodaceae. I. The effects of sodium thioglycolate on the photosynthetic and dark metabolism of purple sulphur bacteria.
    TAYLOR JJ.
    Can J Microbiol; 1958 Oct; 4(5):425-33. PubMed ID: 13573226
    [No Abstract] [Full Text] [Related]

  • 46.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 47. The hyperthermophilic bacterium Aquifex aeolicus: from respiratory pathways to extremely resistant enzymes and biotechnological applications.
    Guiral M, Prunetti L, Aussignargues C, Ciaccafava A, Infossi P, Ilbert M, Lojou E, Giudici-Orticoni MT.
    Adv Microb Physiol; 2012 Oct; 61():125-94. PubMed ID: 23046953
    [Abstract] [Full Text] [Related]

  • 48. Mössbauer effect in the 'super-reduced' form of the high-potential iron-sulphur protein from Chromatium.
    Dickson DP, Cammack R.
    Biochem J; 1974 Dec; 143(3):763-5. PubMed ID: 4376953
    [Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51. Thermal stabilities of membrane-bound, solubilized, and artificially immobilized hydrogenase from Chromatium vinosum.
    Klibanov AM, Kaplan NO, Kamen MD.
    Arch Biochem Biophys; 1980 Feb; 199(2):545-9. PubMed ID: 7362243
    [No Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53. Effect of oxygen on viability and substrate utilization in Chromatium.
    Hurlbert RE.
    J Bacteriol; 1967 Apr; 93(4):1346-52. PubMed ID: 6032511
    [Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57. "Super-reduction" of chromatium high-potential iron-sulphur protein in the presence of dimethyl sulphoxide.
    Cammack R.
    Biochem Biophys Res Commun; 1973 Sep 18; 54(2):548-54. PubMed ID: 4356972
    [No Abstract] [Full Text] [Related]

  • 58. [Study of reductive amination and transamination in Chromatium minutissimum].
    Kondrat'eva EN, Malofeeva IV, Sumarukova RS.
    Mikrobiologiia; 1969 Sep 18; 38(1):13-7. PubMed ID: 4390548
    [No Abstract] [Full Text] [Related]

  • 59.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 60. Chemical characterization of high potential iron proteins from Chromatium and Rhodopseudomonas gelatinosa.
    Dus K, De Klerk H, Sletten K, Bartsch RG.
    Biochim Biophys Acta; 1967 Jun 27; 140(2):291-311. PubMed ID: 6048308
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.