These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
129 related items for PubMed ID: 5305788
61. [Concentration of polyvalent metals following a change in the metabolism of Chromatium vinosum]. Udel'nova TM, Chudina VI, Osnitskaia LK, Boĭchenko EA, Chernogorova SM. Mikrobiologiia; 1977; 46(3):418-22. PubMed ID: 895552 [Abstract] [Full Text] [Related]
62. Chromatium sulfite reductase. I. Characterization of thiosulfate-forming activity at the cell extract level. Kobayashi K, Katsura E, Kondo T, Ishimoto M. J Biochem; 1978 Nov; 84(5):1209-15. PubMed ID: 730752 [Abstract] [Full Text] [Related]
63. Sulfite reductase activity in extracts of various photosynthetic bacteria. Peck HD, Tedro S, Kamen MD. Proc Natl Acad Sci U S A; 1974 Jun; 71(6):2404-6. PubMed ID: 4526215 [Abstract] [Full Text] [Related]
65. Properties of the monomeric and dimeric forms of Chromatium hydrogenase [proceedings]. Serra JL, Llama MJ, Rao KK, Hall DO. Biochem Soc Trans; 1979 Oct; 7(5):1119-20. PubMed ID: 510724 [No Abstract] [Full Text] [Related]
66. The use of electron-paramagnetic-resonance spectroscopy to establish the properties of nickel and the iron-sulphur cluster in hydrogenase from Chromatium vinosum. Albracht SP. Biochem Soc Trans; 1985 Jun; 13(3):582-5. PubMed ID: 2993066 [No Abstract] [Full Text] [Related]
69. Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria - evolution of the Sox sulfur oxidation enzyme system. Meyer B, Imhoff JF, Kuever J. Environ Microbiol; 2007 Dec; 9(12):2957-77. PubMed ID: 17991026 [Abstract] [Full Text] [Related]
70. Kinetic studies of the oxidation and reduction of Chromatium high potential iron-sulfur protein (HiPIP) by inorganic complexes. Comparison of the electron transfer reactivities of HiPIP and horse heart cytochrome c. Rawlings J, Wherland S, Gray HB. J Am Chem Soc; 1976 Apr 14; 98(8):2177-80. PubMed ID: 176192 [No Abstract] [Full Text] [Related]
71. PHOTOREDUCTION OF NICOTINAMIDE-ADENINE DINUCLEOTIDE BY A CELL-FREE SYSTEM FROM CHROMATIUM. HOOD SL. Biochim Biophys Acta; 1964 Nov 29; 88():461-5. PubMed ID: 14249088 [No Abstract] [Full Text] [Related]
74. [Chromatium buderi nov. spec., a new species of the "large" Thiorhodaceae]. Trüper HG, Jannasch HW. Arch Mikrobiol; 1968 Nov 29; 61(4):363-72. PubMed ID: 5715634 [No Abstract] [Full Text] [Related]
75. Reductant-activation of inorganic pyrophosphatase: an ATP-conserving mechanism in anaerobic bacteria. Ware D, Postgate JR. Nature; 1970 Jun 27; 226(5252):1250-1. PubMed ID: 5422601 [No Abstract] [Full Text] [Related]
76. Autotrophy: concepts of lithotrophic bacteria and their organic metabolism. Kelly DP. Annu Rev Microbiol; 1971 Jun 27; 25():177-210. PubMed ID: 4342704 [No Abstract] [Full Text] [Related]
77. Molecular characterization of inorganic sulfur-compound metabolism in the deep-sea epsilonproteobacterium Sulfurovum sp. NBC37-1. Yamamoto M, Nakagawa S, Shimamura S, Takai K, Horikoshi K. Environ Microbiol; 2010 May 27; 12(5):1144-53. PubMed ID: 20132283 [Abstract] [Full Text] [Related]
79. Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value. Pershad HR, Duff JL, Heering HA, Duin EC, Albracht SP, Armstrong FA. Biochemistry; 1999 Jul 13; 38(28):8992-9. PubMed ID: 10413472 [Abstract] [Full Text] [Related]