These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


124 related items for PubMed ID: 537283

  • 1. Effect of verapamil on the calcium and magnesium transports of rat kidney cortex mitochondria.
    Kohda C, Gemba M.
    Jpn J Pharmacol; 1979 Oct; 29(5):745-51. PubMed ID: 537283
    [Abstract] [Full Text] [Related]

  • 2. Inhibitory action of calcium antagonists on ATP-dependent calcium uptake by the renal cortical microsomes.
    Dan T, Gemba M.
    Jpn J Pharmacol; 1980 Dec; 30(6):913-7. PubMed ID: 7241862
    [Abstract] [Full Text] [Related]

  • 3. Alleviation of cyclosporine nephrotoxicity with verapamil and ATP-MgCl2. Mitochondrial respiratory and calcium studies.
    Sumpio BE, Baue AE, Chaudry IH.
    Ann Surg; 1987 Nov; 206(5):655-60. PubMed ID: 3499878
    [Abstract] [Full Text] [Related]

  • 4. Effect of diuretics on ion transport of kidney cortex mitochondria. III. Species difference in calcium accumulation and in ethacrynic acid effect.
    Gemba M, Yamamoto K.
    Jpn J Pharmacol; 1975 Jun; 25(3):233-40. PubMed ID: 127057
    [Abstract] [Full Text] [Related]

  • 5. Divalent cation transport in kidney slices. III. Inhibitory action of verapamil on magnesium gain.
    Gemba M, Obana H, Matsushima Y.
    Jpn J Pharmacol; 1980 Jun; 30(3):389-91. PubMed ID: 7452985
    [No Abstract] [Full Text] [Related]

  • 6. Some effects of ionophore A23187 on energy utilization and the distribution of cations and anions in mitochondria.
    Pfeiffer DR, Hutson SM, Kauffman RF, Lardy HA.
    Biochemistry; 1976 Jun 15; 15(12):2690-7. PubMed ID: 820370
    [Abstract] [Full Text] [Related]

  • 7. [Influence of Mg ions and spermine on ATP-dependent Ca2+ transport in myometrial intracellular structures. II. Comparative study of spermine, Mg ions and cyclosporin A effects on Ca2+ transport in mitochondria].
    Babich LG, Borisova LA, Shlykov SG, Titus OV, Kosterin SA.
    Ukr Biokhim Zh (1999); 2004 Jun 15; 76(6):55-62. PubMed ID: 16350744
    [Abstract] [Full Text] [Related]

  • 8. Tri-Calciphor (16,16-dimethyl-15-dehydroprostaglandin B1 trimer)-mediated mitochondrial Ca2+ movements: modulation by phosphate.
    Uribe S, Devlin TM.
    Biochim Biophys Acta; 1994 Jan 11; 1225(2):144-8. PubMed ID: 7904184
    [Abstract] [Full Text] [Related]

  • 9. The relationship between mitochondrial state, ATP hydrolysis, [Mg2+]i and [Ca2+]i studied in isolated rat cardiomyocytes.
    Leyssens A, Nowicky AV, Patterson L, Crompton M, Duchen MR.
    J Physiol; 1996 Oct 01; 496 ( Pt 1)(Pt 1):111-28. PubMed ID: 8910200
    [Abstract] [Full Text] [Related]

  • 10. The effect of racemomycin-D, a nephrotoxic antibiotic, on cellular metabolism of rat kidney cortex in vitro.
    Inamori Y, Kato Y, Kubo M, Nakanishi J, Nakashima M, Gemba M.
    Jpn J Pharmacol; 1984 Aug 01; 35(4):397-401. PubMed ID: 6094897
    [Abstract] [Full Text] [Related]

  • 11. Magnesium transport by brain mitochondria: energy requirement and dependence on Ca2+ fluxes.
    Rugolo M, Zoccarato F.
    J Neurochem; 1984 Apr 01; 42(4):1127-30. PubMed ID: 6421999
    [Abstract] [Full Text] [Related]

  • 12. Divalent cation transport in kidney slices II. Magnesium transport in kidney cortex slices and effects of diuretics.
    Matsushima Y, Gemba M.
    Jpn J Pharmacol; 1980 Apr 01; 30(2):137-43. PubMed ID: 7452966
    [Abstract] [Full Text] [Related]

  • 13. Studies on the energy-linked Ca2+ accumulation in pig heart mitochondria - role of Mg2'ons.
    Vial C, Otokore A, Goldschmidt D, Gautheron DC.
    Biochimie; 1978 Apr 01; 60(2):159-69. PubMed ID: 667169
    [Abstract] [Full Text] [Related]

  • 14. Effects of lysophospholipids on Ca2+ transport in rat liver mitochondria incubated at physiological Ca2+ concentrations in the presence of Mg2+, phosphate and ATP at 37 degrees C.
    Dalton S, Hughes BP, Barritt GJ.
    Biochem J; 1984 Dec 01; 224(2):423-30. PubMed ID: 6517860
    [Abstract] [Full Text] [Related]

  • 15. Functional and metabolic effects of extracellular magnesium in normoxic and ischemic myocardium.
    Headrick JP, McKirdy JC, Willis RJ.
    Am J Physiol; 1998 Sep 01; 275(3):H917-29. PubMed ID: 9724296
    [Abstract] [Full Text] [Related]

  • 16. Release of Ca2+ and Mg2+ from yeast mitochondria is stimulated by increased ionic strength.
    Bradshaw PC, Pfeiffer DR.
    BMC Biochem; 2006 Feb 06; 7():4. PubMed ID: 16460565
    [Abstract] [Full Text] [Related]

  • 17. Calcium transport and inner mitochondrial membrane damage in renal cortical mitochondria.
    Weinberg JM, Humes HD.
    Am J Physiol; 1985 Jun 06; 248(6 Pt 2):F876-89. PubMed ID: 4003558
    [Abstract] [Full Text] [Related]

  • 18. Correlated effluxes of adenine nucleotides, Mg2+ and Ca2+ induced in rat-liver mitochondria by external Ca2+ and phosphate.
    Zoccarato F, Rugolo M, Siliprandi D, Siliprandi N.
    Eur J Biochem; 1981 Feb 06; 114(2):195-9. PubMed ID: 7215353
    [Abstract] [Full Text] [Related]

  • 19. Calcium transport by rat brain mitochondria and oxidation of 2-oxoglutarate.
    Bernard PA, Cockrell RS.
    Biochim Biophys Acta; 1984 Sep 27; 766(3):549-53. PubMed ID: 6548153
    [Abstract] [Full Text] [Related]

  • 20. t-Butylhydroperoxide-induced Ca2+ efflux from liver mitochondria in the presence of physiological concentrations of Mg2+ and ATP.
    Bernardes CF, Pereira da Silva L, Vercesi AE.
    Biochim Biophys Acta; 1986 Jun 10; 850(1):41-8. PubMed ID: 2423127
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.