These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


174 related items for PubMed ID: 5414304

  • 1. Relationship of solute permeability to erythrocyte glycolysis.
    Tsuboi KK, Fukunaga K.
    Biochim Biophys Acta; 1970; 196(2):215-20. PubMed ID: 5414304
    [No Abstract] [Full Text] [Related]

  • 2. Glycolysis in human blood in the presence of sodium salicylate and the importance of the incubation medium.
    Davies DT, Hughes A, Tonks RS.
    Biochem Pharmacol; 1970 Apr; 19(4):1277-85. PubMed ID: 5513919
    [No Abstract] [Full Text] [Related]

  • 3. The effect of amphotericin B on erythrocyte membrane cation permeability: its relation to in vivo erythrocyte survival.
    Blum SF, Shohet SB, Nathan DG, Gardner FH.
    J Lab Clin Med; 1969 Jun; 73(6):980-7. PubMed ID: 5786463
    [No Abstract] [Full Text] [Related]

  • 4. Studies on erythrocyte glycolysis. 3. The effects of active cation transport, pH and inorganic phosphate concentration on erythrocyte glycolysis.
    Minakami S, Yoshikawa H.
    J Biochem; 1966 Feb; 59(2):145-50. PubMed ID: 4223319
    [No Abstract] [Full Text] [Related]

  • 5. On the ATP dependence of the Ca 2+ -induced increase in K + permeability observed in human red cells.
    Lew VL.
    Biochim Biophys Acta; 1971 Jun 01; 233(3):827-30. PubMed ID: 5113929
    [No Abstract] [Full Text] [Related]

  • 6. Anaerobic glycolysis in normal human erythrocytes incubated in vitro with sodium salicylate.
    Worathumrong N, Grimes AJ.
    Clin Sci Mol Med; 1975 Nov 01; 49(5):375-84. PubMed ID: 170
    [Abstract] [Full Text] [Related]

  • 7. Studies on erythrocyte glycolysis. IV. Kinetics of Pi32 incorporation into 2,3-diphosphoglycerate and ATP.
    Minakami S, Suzuki C, Yoshikawa H.
    J Biochem; 1966 Dec 01; 60(6):707-12. PubMed ID: 5982533
    [No Abstract] [Full Text] [Related]

  • 8. The effect of carbon dioxide and H + on canine erythrocyte glycolysis.
    Zborowska-Sluis DT, Klassen GA.
    Respir Physiol; 1972 May 01; 15(1):96-103. PubMed ID: 5056757
    [No Abstract] [Full Text] [Related]

  • 9. Regulation of erythrocyte glycolysis. Membrane-mediated activation induced in low-electrolyte medium.
    Tsuboi KK.
    Biochim Biophys Acta; 1974 Jun 13; 352(2):307-20. PubMed ID: 4276098
    [No Abstract] [Full Text] [Related]

  • 10. Ouabain-insensitive effects of metabolism on ion and water content of red blood cells.
    Parker JC.
    Am J Physiol; 1971 Jul 13; 221(1):338-42. PubMed ID: 5555806
    [No Abstract] [Full Text] [Related]

  • 11. Some aspects of the osmotic lysis of erythrocytes. II. Differences in osmotic behaviour of erythrocytes after treatment with electrolyte and non-electrolyte solutions.
    Wessels JM, Veerkamp JH.
    Biochim Biophys Acta; 1973 Jan 02; 291(1):178-89. PubMed ID: 4684608
    [No Abstract] [Full Text] [Related]

  • 12. Cation transport and energy metabolism in the high Na+, low K+ erythrocyte of the harbor seal, Phoca vitulina.
    Robin ED, Murdaugh HV, Cross CE, Smith J, Theodore J.
    Comp Biochem Physiol A Comp Physiol; 1971 Aug 01; 39(4):807-21. PubMed ID: 4398992
    [No Abstract] [Full Text] [Related]

  • 13. Effect of propranolol on oxygen binding to hemoglobin in vitro and in vivo.
    Lichtman MA, Cohen J, Murphy MS, Kearney EA, Whitbeck AA.
    Circulation; 1974 May 01; 49(5):881-6. PubMed ID: 4828609
    [No Abstract] [Full Text] [Related]

  • 14. Effects of bicarbonate and thiocyanate on fluxes of Na and K, and on glucose metabolism of actively transporting human red cells.
    Wieth JO.
    Acta Physiol Scand; 1969 Mar 01; 75(3):313-29. PubMed ID: 5790223
    [No Abstract] [Full Text] [Related]

  • 15. Evidence of high stability of the glucose transport carrier function in human red cell ghosts extensively washed in various media.
    Jung CY.
    Arch Biochem Biophys; 1971 Sep 01; 146(1):215-26. PubMed ID: 5004123
    [No Abstract] [Full Text] [Related]

  • 16. Physical and chemical reactions of phosphates in red cell membranes in relation to active transport.
    Blake A, Leader DP, Whittam R.
    J Physiol; 1967 Nov 01; 193(2):467-79. PubMed ID: 4229083
    [Abstract] [Full Text] [Related]

  • 17. Urate transport in human red blood cells. Activation by ATP.
    Lucas-Heron B, Fontenaille C.
    Biochim Biophys Acta; 1979 May 17; 553(2):284-94. PubMed ID: 36146
    [Abstract] [Full Text] [Related]

  • 18. Effect of ouabain on the Ca 2+ -dependent increase in K + permeability in depleted guinea-pig red cells.
    Lew VL.
    Biochim Biophys Acta; 1971 Oct 12; 249(1):236-9. PubMed ID: 5141127
    [No Abstract] [Full Text] [Related]

  • 19. Control of membrane permeability to potassium in red blood cells.
    Whittam R.
    Nature; 1968 Aug 10; 219(5154):610. PubMed ID: 5665710
    [No Abstract] [Full Text] [Related]

  • 20. The efflux of sodium from human red blood cells.
    Eilam Y, Stein WD.
    Biochim Biophys Acta; 1973 Nov 16; 323(4):606-19. PubMed ID: 4761094
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.