These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The oxidation of malate by mitochondria isolated from cauliflower buds. Macrae AR, Moorhouse R. Eur J Biochem; 1970 Sep; 16(1):96-102. PubMed ID: 4318476 [No Abstract] [Full Text] [Related]
3. The oxidation of malate by isolated plant mitochondria. Coleman JO, Palmer JM. Eur J Biochem; 1972 Apr 24; 26(4):499-509. PubMed ID: 4337262 [No Abstract] [Full Text] [Related]
4. Metabolic processes in cytoplasmic particles of the avocado fruit. IX. The oxidation of pyruvate and malate during the climacteric cycle. Lance C, Hobson GE, Young RE, Biale JB. Plant Physiol; 1967 Apr 24; 42(4):471-8. PubMed ID: 6042356 [Abstract] [Full Text] [Related]
5. The control of malate dehydrogenase activity by adenine nucleotides in purified potato tuber (Solanum tuberosum L.) mitochondria. Rustin P, Valat M. Arch Biochem Biophys; 1986 May 15; 247(1):62-7. PubMed ID: 3707142 [Abstract] [Full Text] [Related]
6. Capacity of the malate/oxaloacetate shuttle for transfer of reducing equivalents across the envelope of leaf chloroplasts. Giersch C. Arch Biochem Biophys; 1982 Dec 15; 219(2):379-87. PubMed ID: 7165309 [No Abstract] [Full Text] [Related]
8. Compartmentation in relation to metabolic control in liver. Gumaa KA, McLean P, Greenbaum AL. Essays Biochem; 1971 Dec 15; 7():39-86. PubMed ID: 4399907 [No Abstract] [Full Text] [Related]
10. Oxaloacetate uptake into rat brain mitochondria and reconstruction of the malate/oxaloacetate shuttle. Passarella S, Barile M, Atlante A, Quagliariello E. Biochem Biophys Res Commun; 1984 Mar 30; 119(3):1039-46. PubMed ID: 6712663 [Abstract] [Full Text] [Related]
11. Direct demonstration of enol-oxaloacetate as an immediate product of malate oxidation by the mammalian succinate dehydrogenase. Panchenko MV, Vinogradov AD. FEBS Lett; 1991 Jul 29; 286(1-2):76-8. PubMed ID: 1864383 [Abstract] [Full Text] [Related]
12. The oxidation of citrate, isocitrate and cis-aconitate by isolated mitochondria. Chappell JB. Biochem J; 1964 Feb 29; 90(2):225-37. PubMed ID: 4378636 [No Abstract] [Full Text] [Related]
13. The rates of penetration of oxaloacetate and L-malate into mitochondria. Haslam JM, Krebs HA. Biochem J; 1967 Sep 29; 104(3):51P-52P. PubMed ID: 6049885 [No Abstract] [Full Text] [Related]
15. Factors affecting the penetration of oxaloacetate and L-malate into rat-liver mitochondria. Griffiths DE, Halsam JM. Biochem J; 1967 Sep 29; 104(3):52P. PubMed ID: 6049887 [No Abstract] [Full Text] [Related]
16. ENZYMIC PROPERTIES OF MALATE DEHYDROGENASE OF BACILLUS SUBTILIS. YOSHIDA A. J Biol Chem; 1965 Mar 29; 240():1118-24. PubMed ID: 14284712 [No Abstract] [Full Text] [Related]
17. Respiratory properties and malate metabolism in Percoll-purified mitochondria isolated from pineapple, Ananas comosus (L.) Merr. cv. smooth cayenne. Hong HT, Nose A, Agarie S. J Exp Bot; 2004 Oct 29; 55(406):2201-11. PubMed ID: 15361538 [Abstract] [Full Text] [Related]
18. Pyridine nucleotide independent oxidation of L-malate in genus Neisseria. Holten E. Acta Pathol Microbiol Scand B; 1976 Feb 29; 84(1):17-21. PubMed ID: 814782 [Abstract] [Full Text] [Related]
19. Steroid hydroxylation and oxidative phosphorylation in human adrenal cortex mitochondria. Sauer LA. Endocrinology; 1971 Feb 29; 88(2):318-24. PubMed ID: 4395505 [No Abstract] [Full Text] [Related]
20. [Malate dehydrogenase and lactate dehydrogenase in trematodes and turbellarians]. Vykhrestiuk NP, Burenina EA, Iarygina GV. Zh Evol Biokhim Fiziol; 1986 Feb 29; 22(1):24-9. PubMed ID: 3962529 [Abstract] [Full Text] [Related] Page: [Next] [New Search]