These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


161 related items for PubMed ID: 5437

  • 1. Regulation of steady state level of phosphoenzyme and ATP synthesis in sarcoplasmic reticulum vesicles during reversal of the Ca2+ pump.
    de Meis L.
    J Biol Chem; 1976 Apr 10; 251(7):2055-62. PubMed ID: 5437
    [Abstract] [Full Text] [Related]

  • 2. Correlation between Ca2+ uptake, Ca2+ efflux and phosphoenzyme level in sarcoplasmic-reticulum vesicles.
    Benech JC, Galina A, de Meis L.
    Biochem J; 1991 Mar 01; 274 ( Pt 2)(Pt 2):427-32. PubMed ID: 1826078
    [Abstract] [Full Text] [Related]

  • 3. Calcium and magnesium regulation of phosphorylation by ATP and ITP in sarcoplasmic reticulum vesicles.
    Souza DO, de Meis L.
    J Biol Chem; 1976 Oct 25; 251(20):6355-9. PubMed ID: 185211
    [Abstract] [Full Text] [Related]

  • 4. On the sidedness of membrane phosphorylation by Pi and ATP synthesis during reversal of the Ca2+ pump of sarcoplasmic reticulum vesicles.
    de Meis L, Carvalho MG.
    J Biol Chem; 1976 Mar 10; 251(5):1413-7. PubMed ID: 1254574
    [Abstract] [Full Text] [Related]

  • 5. ATP reversible Pi exchange and membrane phosphorylation in sarcoplasmic reticulum vesicles: activation by silver in the absence of a Ca2+ concentration gradient.
    de Meis L, Sorenson MM.
    Biochemistry; 1975 Jun 17; 14(12):2739-44. PubMed ID: 125101
    [Abstract] [Full Text] [Related]

  • 6. ADP-activated calcium ion exchange in sarcoplasmic reticulum vesicles.
    Beirăo PS, De Meis L.
    Biochim Biophys Acta; 1976 May 21; 433(3):520-30. PubMed ID: 819033
    [Abstract] [Full Text] [Related]

  • 7. Characterization of cardiac sarcoplasmic reticulum ATP-ADP phosphate exchange and phosphorylation of the calcium transport adenosine triphosphatase.
    Suko J, Hasselbach W.
    Eur J Biochem; 1976 Apr 15; 64(1):123-30. PubMed ID: 6267
    [Abstract] [Full Text] [Related]

  • 8. On a possible mechanism of energy conservation in sarcoplasmic reticulum membrane.
    Carvalho MG, de Souza DG, de Meis L.
    J Biol Chem; 1976 Jun 25; 251(12):3629-36. PubMed ID: 932000
    [Abstract] [Full Text] [Related]

  • 9. Proton inactivation of Ca2+ transport by sarcoplasmic reticulum.
    Berman MC, McIntosh DB, Kench JE.
    J Biol Chem; 1977 Feb 10; 252(3):994-1001. PubMed ID: 14142
    [Abstract] [Full Text] [Related]

  • 10. Energy interconversion in sarcoplasmic reticulum vesicles in the presence of Ca2+ and Sr2+ gradients.
    Guimarães-Motta H, Sande-Lemos MP, de Meis L.
    J Biol Chem; 1984 Jul 25; 259(14):8699-705. PubMed ID: 6235215
    [Abstract] [Full Text] [Related]

  • 11. Rate of calcium release and ATP synthesis in sarcoplasmic reticulum vesicles.
    Sande-Lemos MP, De Meis L.
    Eur J Biochem; 1988 Jan 15; 171(1-2):273-8. PubMed ID: 2448140
    [Abstract] [Full Text] [Related]

  • 12. Formation of magnesium-phosphoenzyme and magnesium-calcium-phosphoenzyme in the phosphorylation of adenosine triphosphatase by orthophosphate in sarcoplasmic reticulum. Models of a reaction sequence.
    Suko J, Plank B, Preis P, Kolassa N, Hellmann G, Conca W.
    Eur J Biochem; 1981 Oct 15; 119(2):225-36. PubMed ID: 6458492
    [Abstract] [Full Text] [Related]

  • 13. Reaction mechanism of Ca2+-dependent ATP hydrolysis by skeletal muscle sarcoplasmic reticulum in the absence of added alkali metal salts. III. Sequential occurrence of ADP-sensitive and ADP-insensitive phosphoenzymes.
    Shigekawa M, Dougherty JP.
    J Biol Chem; 1978 Mar 10; 253(5):1458-64. PubMed ID: 146712
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Aspects of the mechanism of action of local anesthetics on the sarcoplasmic reticulum of skeletal muscle.
    Suko J, Winkler F, Scharinger B, Hellmann G.
    Biochim Biophys Acta; 1976 Sep 07; 443(3):571-86. PubMed ID: 134747
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Ca2+ translocation and catalytic activity of the sarcoplasmic reticulum ATPase. Modulation by ATP, Ca2+, and Pi.
    Galina A, de Meis L.
    J Biol Chem; 1991 Sep 25; 266(27):17978-82. PubMed ID: 1833389
    [Abstract] [Full Text] [Related]

  • 18. Comparison between ATP-supported and GTP-supported phosphate turnover of the calcium-transporting sarcoplasmic reticulum membranes.
    Ronzani N, Migala A, Hasselbach W.
    Eur J Biochem; 1979 Nov 25; 101(2):593-606. PubMed ID: 160316
    [Abstract] [Full Text] [Related]

  • 19. Calcium transport ATPase of canine cardiac sarcoplasmic reticulum. A comparison with that of rabbit fast skeletal muscle sarcoplasmic reticulum.
    Shigekawa M, Finegan JA, Katz AM.
    J Biol Chem; 1976 Nov 25; 251(22):6894-900. PubMed ID: 11210
    [Abstract] [Full Text] [Related]

  • 20. Kinetic effects of calcium and ADP on the phosphorylated intermediate of sarcoplasmic reticulum ATPase.
    Nakamura Y, Kurzmack M, Inesi G.
    J Biol Chem; 1986 Mar 05; 261(7):3090-7. PubMed ID: 2936732
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.