These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. On the dielectrically observable consequences of the diffusional motions of lipids and proteins in membranes. 2. Experiments with microbial cells, protoplasts and membrane vesicles. Harris CM, Kell DB. Eur Biophys J; 1985 Nov; 13(1):11-24. PubMed ID: 3935420 [Abstract] [Full Text] [Related]
3. Some observations on the dielectric properties of hemoglobin's suspending medium inside human erythrocytes. Jenin PC, Schwan HP. Biophys J; 1980 May; 30(2):285-93. PubMed ID: 7260276 [Abstract] [Full Text] [Related]
4. In vitro ultrasound-mediated leakage from phospholipid vesicles. Pong M, Umchid S, Guarino AJ, Lewin PA, Litniewski J, Nowicki A, Wrenn SP. Ultrasonics; 2006 Dec; 45(1-4):133-45. PubMed ID: 16979206 [Abstract] [Full Text] [Related]
5. On the dielectrically observable consequences of the diffusional motions of lipids and proteins in membranes. 1. Theory and overview. Kell DB, Harris CM. Eur Biophys J; 1985 Dec; 12(4):181-97. PubMed ID: 4043002 [Abstract] [Full Text] [Related]
6. Drug permeability across a phospholipid vesicle based barrier: 3. Characterization of drug-membrane interactions and the effect of agitation on the barrier integrity and on the permeability. Flaten GE, Skar M, Luthman K, Brandl M. Eur J Pharm Sci; 2007 Mar; 30(3-4):324-32. PubMed ID: 17204409 [Abstract] [Full Text] [Related]
12. Dielectric properties of aqueous zwitterionic liposome suspensions. Di Biasio A, Cametti C. Bioelectrochemistry; 2007 May 01; 70(2):328-34. PubMed ID: 16781895 [Abstract] [Full Text] [Related]
13. Passive electrical properties of the membrane and cytoplasm of cultured rat basophil leukemia cells. I. Dielectric behavior of cell suspensions in 0.01-500 MHz and its simulation with a single-shell model. Irimajiri A, Asami K, Ichinowatari T, Kinoshita Y. Biochim Biophys Acta; 1987 Jan 26; 896(2):203-13. PubMed ID: 3801468 [Abstract] [Full Text] [Related]
15. Electroformation of giant phospholipid vesicles on a silicon substrate: advantages of controllable surface properties. Le Berre M, Yamada A, Reck L, Chen Y, Baigl D. Langmuir; 2008 Mar 18; 24(6):2643-9. PubMed ID: 18278963 [Abstract] [Full Text] [Related]
16. [Equilibrium surface charge distribution in phospholipid vesicles. III. Effect of nonelectrostatic factors]. Tenchov BG, Raĭchev BD. Biofizika; 1978 Mar 18; 23(6):1011-4. PubMed ID: 719013 [Abstract] [Full Text] [Related]
17. Emergent properties arising from the assembly of amphiphiles. Artificial vesicle membranes as reaction promoters and regulators. Walde P, Umakoshi H, Stano P, Mavelli F. Chem Commun (Camb); 2014 Sep 14; 50(71):10177-97. PubMed ID: 24921467 [Abstract] [Full Text] [Related]
18. Dielectric behavior of the frog lens in the 100 Hz to 500 MHz range. Simulation with an allocated ellipsoidal-shells model. Watanabe M, Suzaki T, Irimajiri A. Biophys J; 1991 Jan 14; 59(1):139-49. PubMed ID: 2015379 [Abstract] [Full Text] [Related]
20. Role of hydrophobic interactions in the adsorption of poly(ethylene glycol) chains on phospholipid membranes investigated with a quartz crystal microbalance. Liu G, Fu L, Zhang G. J Phys Chem B; 2009 Mar 19; 113(11):3365-9. PubMed ID: 19227992 [Abstract] [Full Text] [Related] Page: [Next] [New Search]