These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


123 related items for PubMed ID: 5535664

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Metabolic studies with chloropropylate acaricide in the dairy cow.
    ST John LE, Lisk DJ.
    J Agric Food Chem; 1973; 21(4):644-6. PubMed ID: 4718937
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Effects of slow-release urea and rumen-protected methionine and histidine on performance of dairy cows.
    Giallongo F, Hristov AN, Oh J, Frederick T, Weeks H, Werner J, Lapierre H, Patton RA, Gehman A, Parys C.
    J Dairy Sci; 2015 May; 98(5):3292-308. PubMed ID: 25726096
    [Abstract] [Full Text] [Related]

  • 28. Lowering rumen-degradable protein maintained energy-corrected milk yield and improved nitrogen-use efficiency in multiparous lactating dairy cows exposed to heat stress.
    Kaufman JD, Kassube KR, Ríus AG.
    J Dairy Sci; 2017 Oct; 100(10):8132-8145. PubMed ID: 28755937
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Effects of Bacillus subtilis natto on milk production, rumen fermentation and ruminal microbiome of dairy cows.
    Sun P, Wang JQ, Deng LF.
    Animal; 2013 Feb; 7(2):216-22. PubMed ID: 23031615
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Effects of exogenous fibrolytic and amylolytic enzymes on ruminal fermentation and performance of mid-lactation dairy cows.
    Zilio EMC, Del Valle TA, Ghizzi LG, Takiya CS, Dias MSS, Nunes AT, Silva GG, Rennó FP.
    J Dairy Sci; 2019 May; 102(5):4179-4189. PubMed ID: 30879828
    [Abstract] [Full Text] [Related]

  • 36. Metabolism of Banvel-D herbicide in a dairy cow.
    St John LE, Lisk DJ.
    J Dairy Sci; 1969 Mar; 52(3):392-3. PubMed ID: 5766834
    [No Abstract] [Full Text] [Related]

  • 37. The effect of by-product inclusion level on milk production, nutrient digestibility and excretion, and rumen fermentation parameters in lactating dairy cows offered a pasture-based diet.
    Whelan SJ, Carey W, Boland TM, Lynch MB, Kelly AK, Rajauria G, Pierce KM.
    J Dairy Sci; 2017 Feb; 100(2):1055-1062. PubMed ID: 27988110
    [Abstract] [Full Text] [Related]

  • 38. Use of the Cornell net carbohydrate and protein system and rumen-protected lysine and methionine to reduce nitrogen excretion from lactating dairy cows.
    Dinn NE, Shelford JA, Fisher LJ.
    J Dairy Sci; 1998 Jan; 81(1):229-37. PubMed ID: 9493098
    [Abstract] [Full Text] [Related]

  • 39. Effects of dietary starch content and rate of fermentation on methane production in lactating dairy cows.
    Hatew B, Podesta SC, Van Laar H, Pellikaan WF, Ellis JL, Dijkstra J, Bannink A.
    J Dairy Sci; 2015 Jan; 98(1):486-99. PubMed ID: 25465630
    [Abstract] [Full Text] [Related]

  • 40. Pathway for the elimination of melamine in lactating dairy cows.
    Sun P, Wang JQ, Shen JS, Wei HY.
    J Dairy Sci; 2012 Jan; 95(1):266-71. PubMed ID: 22192206
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.