These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


141 related items for PubMed ID: 5562357

  • 1. Acetyl phosphate as substrate for Ca 2+ uptake in skeletal muscle microsomes. Inhibition by alkali ions.
    De Meis L, Hasselbach W.
    J Biol Chem; 1971 Aug 10; 246(15):4759-63. PubMed ID: 5562357
    [No Abstract] [Full Text] [Related]

  • 2. Allosteric inhibiton by alkali ions of the Ca 2+ uptake and adenosine triphosphatase activity of skeletal muscle microsomes.
    De Meis L.
    J Biol Chem; 1971 Aug 10; 246(15):4764-73. PubMed ID: 4254540
    [No Abstract] [Full Text] [Related]

  • 3. Ca2+ uptake and acetyl phosphatase of skeletal muscle microsomes. Inhibition by Na+, K+, Li+, and adenosine triphosphate.
    De Meis L.
    J Biol Chem; 1969 Jul 25; 244(14):3733-9. PubMed ID: 4308734
    [No Abstract] [Full Text] [Related]

  • 4. Comparative data of Ca2+ transport in brain and skeletal muscle microsomes.
    de Meis L, Rubin-Altschul M, Machado RD.
    J Biol Chem; 1970 Apr 25; 245(8):1883-9. PubMed ID: 4245465
    [No Abstract] [Full Text] [Related]

  • 5. Effect of alkaline cations on ATPase activity and Ca 2+ uptake of skeletal muscle microsomes.
    Costa MJ, Perret M, De Meis L.
    An Acad Bras Cienc; 1970 Jun 30; 42(2):269-74. PubMed ID: 4258109
    [No Abstract] [Full Text] [Related]

  • 6. Sarcoplasmic reticulum. XIV. Acetylphosphate and carbamylphosphate as energy sources for Ca++ transport.
    Pucell A, Martonosi A.
    J Biol Chem; 1971 May 25; 246(10):3389-97. PubMed ID: 4324900
    [No Abstract] [Full Text] [Related]

  • 7. Isometric contraction in glycerinated skeletal muscle of horseshoe crab and rabbit. 3. Relaxation.
    Stanley DW, De Villafranca GW.
    Comp Biochem Physiol B; 1971 Nov 15; 40(3):623-32. PubMed ID: 5002459
    [No Abstract] [Full Text] [Related]

  • 8. Sarcoplasmic reticulum. XI. The mode of involvement of phospholipids in the hydrolysis of ATP by sarcoplasmic reticulum membranes.
    Martonosi A, Donley JR, Pucell AG, Halpin RA.
    Arch Biochem Biophys; 1971 Jun 15; 144(2):529-40. PubMed ID: 4328159
    [No Abstract] [Full Text] [Related]

  • 9. Calcium binding properties of sarcoplasmic reticulum membranes.
    Cohen A, Selinger Z.
    Biochim Biophys Acta; 1969 Jun 03; 183(1):27-35. PubMed ID: 4307352
    [No Abstract] [Full Text] [Related]

  • 10. Control of calcium efflux from sarcoplasmic reticulum vesicles by external calcium.
    Katz AM, Repke DI, Fudyma G, Shigekawa M.
    J Biol Chem; 1977 Jun 25; 252(12):4210-4. PubMed ID: 863924
    [No Abstract] [Full Text] [Related]

  • 11. Studies on the adenosine triphosphatase, calcium uptake and relaxing activity of the microsomal granules from skeletal muscle.
    Lee KS, Tanaka K, Yu DH.
    J Physiol; 1965 Aug 25; 179(3):456-78. PubMed ID: 4221820
    [No Abstract] [Full Text] [Related]

  • 12. Studies on the partial reactions catalyzed by the (Na++K+)-activated ATPase. 3. Relation of K+-dependent p-nitrophenylphosphatase to Na+ transport in red cell ghosts.
    Askari A, Rao SN.
    Biochim Biophys Acta; 1971 Jul 06; 241(1):75-88. PubMed ID: 4331046
    [No Abstract] [Full Text] [Related]

  • 13. Calcium binding to the sarcoplasmic reticulum of rabbit skeletal muscle.
    Chevallier J, Butow RA.
    Biochemistry; 1971 Jul 06; 10(14):2733-7. PubMed ID: 5558695
    [No Abstract] [Full Text] [Related]

  • 14. Ca++ uptake in muscle microsomes. Activation by polyamines.
    De Meis L.
    J Biol Chem; 1968 Mar 25; 243(6):1174-9. PubMed ID: 4230814
    [No Abstract] [Full Text] [Related]

  • 15. Effects of monovalent cations on the (Mg 2+ + Ca 2+ )-dependent ATPase of the red cell membrane.
    Bond GH, Green JW.
    Biochim Biophys Acta; 1971 Aug 13; 241(2):393-8. PubMed ID: 4258480
    [No Abstract] [Full Text] [Related]

  • 16. Active cation transport and ATP hydrolysis in Acanthamoeba sp.
    Klein RL, Breland AP.
    Comp Biochem Physiol; 1966 Jan 13; 17(1):39-47. PubMed ID: 4287303
    [No Abstract] [Full Text] [Related]

  • 17. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. 3. Ca plus-uptake and ATP-splitting.
    Yamada S, Yamamoto T, Tonomura Y.
    J Biochem; 1970 Jun 13; 67(6):789-94. PubMed ID: 4247349
    [No Abstract] [Full Text] [Related]

  • 18. The influence of alkali metals on the incorporation of labelled phosphate into ATP in red cell ghosts.
    Dawson AG, Whittam R.
    Biochim Biophys Acta; 1970 Jun 02; 203(3):590-2. PubMed ID: 5523752
    [No Abstract] [Full Text] [Related]

  • 19. Functions of Na+ and K+ in the active transport of -aminoisobutyric acid in a marine pseudomonad.
    Thompson J, MacLeod RA.
    J Biol Chem; 1971 Jun 25; 246(12):4066-74. PubMed ID: 5561475
    [No Abstract] [Full Text] [Related]

  • 20. [Effect of different salts on beta-hydroxyacyl-CoA dehydrogenase and beta-acetoacetyl-CoA thiolase activities in muscles of Eriocheir sinensis and Homarus vulgaris].
    Chapelle S, Dandrifosse G.
    Arch Int Physiol Biochim; 1972 Apr 25; 80(2):213-27. PubMed ID: 4114869
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.