These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


164 related items for PubMed ID: 560237

  • 1. Release, storage and uptake of catecholamines by a clonal cell line of nerve growth factor (NGF) responsive pheo-chromocytoma cells.
    Greene LA, Rein G.
    Brain Res; 1977 Jul 01; 129(2):247-63. PubMed ID: 560237
    [No Abstract] [Full Text] [Related]

  • 2. Tetanus toxin affects the K+-stimulated release of catecholamines from nerve growth factor-treated PC12 cells.
    Figliomeni B, Grasso A.
    Biochem Biophys Res Commun; 1985 Apr 16; 128(1):249-56. PubMed ID: 3985967
    [Abstract] [Full Text] [Related]

  • 3. Release of (3H)norepinephrine from a clonal line of pheochromocytoma cells (PC12) by nicotinic cholinergic stimulation.
    Greene LA, Rein G.
    Brain Res; 1977 Dec 23; 138(3):521-8. PubMed ID: 597722
    [Abstract] [Full Text] [Related]

  • 4. Reserpine-resistant uptake of catecholamines in isolated tissues of the rat. A histochemical study.
    Hamberger B.
    Acta Physiol Scand Suppl; 1967 Dec 23; 295():1-56. PubMed ID: 6057304
    [No Abstract] [Full Text] [Related]

  • 5. Nerve growth factor and K-252a increase catecholamine release from PC12 cells.
    Nikodijevic B, Creveling CR, Koizumi S, Guroff G.
    J Neurosci Res; 1990 Jul 23; 26(3):288-95. PubMed ID: 2118962
    [Abstract] [Full Text] [Related]

  • 6. Storage of dopamine and acetylcholine in granules of PC12, a clonal pheochromocytoma cell line.
    Rebois RV, Reynolds EE, Toll L, Howard BD.
    Biochemistry; 1980 Mar 18; 19(6):1240-8. PubMed ID: 7370231
    [No Abstract] [Full Text] [Related]

  • 7. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor.
    Greene LA, Tischler AS.
    Proc Natl Acad Sci U S A; 1976 Jul 18; 73(7):2424-8. PubMed ID: 1065897
    [Abstract] [Full Text] [Related]

  • 8. Short-term regulation of catecholamine biosynthesis in a nerve growth factor responsive clonal line of rat pheochromocytoma cells.
    Greene LA, Rein G.
    J Neurochem; 1978 Mar 18; 30(3):549-55. PubMed ID: 210258
    [No Abstract] [Full Text] [Related]

  • 9. 5-hydroxytryptamine uptake by rat brain in vitro.
    Blackburn KJ, French PC, Merrills RJ.
    Life Sci; 1967 Aug 01; 6(15):1653-63. PubMed ID: 5299290
    [No Abstract] [Full Text] [Related]

  • 10. Uptake and metabolism of catecholamines by the human red blood cell.
    Danon A, Sapira JD.
    Clin Pharmacol Ther; 1972 Aug 01; 13(6):916-22. PubMed ID: 4628221
    [No Abstract] [Full Text] [Related]

  • 11. Potassium-induced release of [3H]catecholamine from brain: effects of pre-exposure to catecholamine uptake inhibitors.
    Dembiec D, Cohen G.
    J Pharmacol Exp Ther; 1981 Jun 01; 217(3):727-32. PubMed ID: 7230001
    [Abstract] [Full Text] [Related]

  • 12. Differences between the effects of acute and long-term treatment with desmethylimipramine on reserpine-induced release of amines from rat brain.
    Roffler-Tarlov S.
    Biochem Pharmacol; 1975 Jul 15; 24(13-14):1321-5. PubMed ID: 1148020
    [No Abstract] [Full Text] [Related]

  • 13. Biochemical studies on the development of primary sympathetic neurons in cell culture.
    Patterson PH, Reichardt LF, Chun LL.
    Cold Spring Harb Symp Quant Biol; 1976 Jul 15; 40():389-97. PubMed ID: 1065533
    [No Abstract] [Full Text] [Related]

  • 14. Inhibition of the uptake of tritiated catecholamines by antidepressant and related agents.
    Ross SB, Renyi AL.
    Eur J Pharmacol; 1967 Dec 15; 2(3):181-6. PubMed ID: 5591516
    [No Abstract] [Full Text] [Related]

  • 15. Sodium dependence of the nerve growth factor--regulated hexose uptake in chick embryo ganglionic cells.
    Skaper SD, Varon S.
    Brain Res; 1979 Aug 24; 172(2):303-13. PubMed ID: 466476
    [Abstract] [Full Text] [Related]

  • 16. Second-messenger control of catecholamine release from PC12 cells. Role of muscarinic receptors and nerve-growth-factor-induced cell differentiation.
    Meldolesi J, Gatti G, Ambrosini A, Pozzan T, Westhead EW.
    Biochem J; 1988 Nov 01; 255(3):761-8. PubMed ID: 2850796
    [Abstract] [Full Text] [Related]

  • 17. The effect of nerve growth factor (NGF) on the catecholamine contents of two human pheochromocytomas in tissue culture.
    Pfragner R, Sadjak A, Walser V.
    Exp Pathol; 1984 Nov 01; 26(1):21-31. PubMed ID: 6383859
    [Abstract] [Full Text] [Related]

  • 18. Cell cycle-dependent modulation of biosynthesis and stimulus-evoked release of catecholamines in PC12 pheochromocytoma cells.
    Koike T, Takashima A.
    J Neurochem; 1986 May 01; 46(5):1493-500. PubMed ID: 2870133
    [Abstract] [Full Text] [Related]

  • 19. Molecular aspects of the storage and uptake of catecholamines.
    Kirshner N, Schanberg SM, Ferris RM.
    Adv Drug Res; 1971 May 01; 6():121-56. PubMed ID: 4334740
    [No Abstract] [Full Text] [Related]

  • 20. Release of 3H-noradrenaline from the rat vas deferens under various in vitro conditions.
    Ross SB, Kelder D.
    Acta Physiol Scand; 1979 Mar 01; 105(3):338-49. PubMed ID: 443064
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.