These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 5658141

  • 1. Biosynthesis of mustard oil glucosides: 3-benzylmalic acid, a precursor of 2-amino-4-phenylbutyric acid and of gluconasturtiin.
    Underhill EW.
    Can J Biochem; 1968 May; 46(5):401-5. PubMed ID: 5658141
    [No Abstract] [Full Text] [Related]

  • 2. BIOSYNTHESIS OF MUSTARD OIL GLUCOSIDES. V. FORMATION OF GLUCONASTURTIIN FROM L-GAMMA-PHENYLBUTYRINE-C14-N15 IN WATERCRESS.
    UNDERHILL EW.
    Can J Biochem; 1965 Feb; 43():179-87. PubMed ID: 14325968
    [No Abstract] [Full Text] [Related]

  • 3. Chain elongation of aromatic amino acids: the role of 2-benzylmalic acid in the biosynthesis of a C6C4 amino acid and a C6C3 mustard oil glucoside.
    Dörnemann D, Löffelhardt W, Kindl H.
    Can J Biochem; 1974 Oct; 52(10):916-21. PubMed ID: 4425967
    [No Abstract] [Full Text] [Related]

  • 4. Biosynthesis of mustard oil glucosides: conversion of phenylacetaldehyde oxime and 3-phenylpropionaldehyde oxime to glucotropaeolin and gluconasturtiin.
    Underhill EW.
    Eur J Biochem; 1967 Jul; 2(1):61-3. PubMed ID: 6082608
    [No Abstract] [Full Text] [Related]

  • 5. BIOSYNTHESIS OF MUSTARD OIL GLUCOSIDES. VI. BIOSYNTHESIS OF GLUCOBARBARIN IN RESEDA LUTEOLA L.
    UNDERHILL EW.
    Can J Biochem; 1965 Feb; 43():189-98. PubMed ID: 14325969
    [No Abstract] [Full Text] [Related]

  • 6. [Concerning 2 ways of gallic acid biosynthesis].
    Zaprometov MN, Bukhlaeva VIa.
    Biokhimiia; 1968 Feb; 33(2):383-6. PubMed ID: 5663922
    [No Abstract] [Full Text] [Related]

  • 7. Naphthoquinone biosynthesis in higher plants. I. Studies on 2-hydroxy-1,4-naphthoquinone in Impatiens balsamina L.
    Chen D, Bohm BA.
    Can J Biochem; 1966 Oct; 44(10):1389-95. PubMed ID: 5954117
    [No Abstract] [Full Text] [Related]

  • 8. [A new pathway for biosynthesis of anthraquinones: incorporation of shikimic acid into 1,2-dihydroxyanthraquinone (alizarin) and 1,2,4-trihydroxyanthraquinone (purpurin) in Rubia tinctorum L].
    Leistner E, Zenk MH.
    Z Naturforsch B; 1967 Aug; 22(8):865-8. PubMed ID: 4385023
    [No Abstract] [Full Text] [Related]

  • 9. Meta-carboxy-substituted aromatic amino acids in plant metabolism. 3.
    Larsen PO.
    Biochim Biophys Acta; 1967 Jun 13; 141(1):27-46. PubMed ID: 6051583
    [No Abstract] [Full Text] [Related]

  • 10. The biosynthesis of salicylic acid in Mycobacterium smegmatis via the shikimic acid pathway.
    Ratledge C.
    Biochim Biophys Acta; 1969 Oct 07; 192(1):148-50. PubMed ID: 5347966
    [No Abstract] [Full Text] [Related]

  • 11. [Biogenesis of plant pigments. 1. Comparative study of the incorporation of shikimic 14C-1,2 and trans-cinnamic 14C-3 acids in two anthocyanic pigment derivatives of delphinidine and cyanidine].
    Pla J, Ville A, Pachéco H.
    Bull Soc Chim Biol (Paris); 1967 Oct 07; 49(4):395-413. PubMed ID: 6060513
    [No Abstract] [Full Text] [Related]

  • 12. Biosynthesis of 6-methylsalicylic acid by Mycobacterium phlei.
    Hudson AT, Campbell IM, Bentley R.
    Biochemistry; 1970 Sep 29; 9(20):3988-92. PubMed ID: 5501655
    [No Abstract] [Full Text] [Related]

  • 13. Biosynthesis of mutard oil glucosides. 3. Formation of glucotropaeolin from L-phenylalanine-C14-N15.
    Underhill EW, Chisholm MD.
    Biochem Biophys Res Commun; 1964 Sep 29; 14():425-30. PubMed ID: 5836537
    [No Abstract] [Full Text] [Related]

  • 14. BIOSYNTHESIS OF MUSTARD OIL GLUCOSIDES. IV. THE ADMINISTRATION OF METHIONINE-C14 AND RELATED COMPOUNDS TO HORSERADISH.
    CHISHOLM MD, WETTER LR.
    Can J Biochem; 1964 Jul 29; 42():1033-40. PubMed ID: 14209394
    [No Abstract] [Full Text] [Related]

  • 15. The origin of the glucosidic linkage oxygen of the cyanogenic glucosides, linamarin and lotaustralin.
    Zilg H, Tapper BA, Conn EE.
    J Biol Chem; 1972 Apr 25; 247(8):2384-6. PubMed ID: 5019952
    [No Abstract] [Full Text] [Related]

  • 16. Studies on the biosynthesis of mitomycin C by Streptomyces verticillatus.
    Bezanson GS, Vining LC.
    Can J Biochem; 1971 Aug 25; 49(8):911-8. PubMed ID: 5120255
    [No Abstract] [Full Text] [Related]

  • 17. The formation of -cyclohexyl-fatty acids from shikimate in an acidophilic thermophilic bacillus. A new biosynthetic pathway.
    De Rosa M, Gambacorta A, Minale L, Bu'lock JD.
    Biochem J; 1972 Jul 25; 128(4):751-4. PubMed ID: 4638790
    [Abstract] [Full Text] [Related]

  • 18. The biosynthetic pathway from caffeic acid to scopolin in tobacco leaves.
    Steck W.
    Can J Biochem; 1967 Dec 25; 45(12):1995-2003. PubMed ID: 6082583
    [No Abstract] [Full Text] [Related]

  • 19. Biosynthesis of chloramphenicol. Origin and degradation of the aromatic ring.
    O'Neill WP, Nystrom RF, Rinehart KL, Gottlieb D.
    Biochemistry; 1973 Nov 06; 12(23):4775-84. PubMed ID: 4773855
    [No Abstract] [Full Text] [Related]

  • 20. Oximes, nitriles and 2-hydroxynitriles as precursors in the biosynthesis of cyanogenic glucosides.
    Tapper BA, Butler GW.
    Biochem J; 1971 Oct 06; 124(5):935-41. PubMed ID: 5131015
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.