These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


373 related items for PubMed ID: 5676527

  • 1. Effects of guanidine derivatives on mitochondrial function. I. Phenethylbiguanide inhibition of respiration in mitochondria from guinea pig and rat tissues.
    Davidoff F.
    J Clin Invest; 1968 Oct; 47(10):2331-43. PubMed ID: 5676527
    [Abstract] [Full Text] [Related]

  • 2. Effects of guanidine derivatives on mitochondrial function. II. Reversal of guanidine-derivative inhibiton by free fatty acids.
    Davidoff F.
    J Clin Invest; 1968 Oct; 47(10):2344-58. PubMed ID: 5676528
    [Abstract] [Full Text] [Related]

  • 3. Phenethylbiguanide and the inhibition of hepatic gluconeogenesis in the guinea pig.
    Ogata K, Jomain-Baum M, Hanson RW.
    Biochem J; 1974 Oct; 144(1):49-57. PubMed ID: 4462575
    [Abstract] [Full Text] [Related]

  • 4. On rate-controlling factors of long chain fatty acid oxidation.
    Pande SV.
    J Biol Chem; 1971 Sep 10; 246(17):5384-90. PubMed ID: 5094674
    [No Abstract] [Full Text] [Related]

  • 5. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of the free acids and their carnitine esters on coenzyme A-dependent oxidations in rat liver mitochondria.
    Holland PC, Sherratt HS.
    Biochem J; 1973 Sep 10; 136(1):157-71. PubMed ID: 4772622
    [Abstract] [Full Text] [Related]

  • 6. The effect of carnitine and CoA on ketogenesis and citric acid cycle activity during long-chain fatty acid oxidation by isolated rat liver mitochondria.
    van Tol A.
    Biochim Biophys Acta; 1970 Dec 08; 223(2):429-32. PubMed ID: 4323519
    [No Abstract] [Full Text] [Related]

  • 7. Inhibition of mitochondrial metabolism by the diabetogenic thiadiazine diazoxide. I. Action on succinate dehydrogenase and TCA-cycle oxidations.
    Schäfer G, Portenhauser R, Trolp R.
    Biochem Pharmacol; 1971 Jun 08; 20(6):1271-80. PubMed ID: 5118123
    [No Abstract] [Full Text] [Related]

  • 8. Studies on the mechanism of the inhibitory effects of erucylcarnitine in rat heart mitochondria.
    Christophersen BO, Christiansen RZ.
    Biochim Biophys Acta; 1975 Jun 23; 388(3):402-12. PubMed ID: 1137719
    [Abstract] [Full Text] [Related]

  • 9. The effects of coenzyme A and carnitine on steady-state ATP/ADP ratios and the rate of long-chain free fatty acid oxidation in liver mitochondria.
    Christiansen EN, Davis EJ.
    Biochim Biophys Acta; 1978 Apr 11; 502(1):17-28. PubMed ID: 638140
    [Abstract] [Full Text] [Related]

  • 10. THE EFFECTS OF ADENINE NUCLEOTIDES ON PYRUVATE METABOLISM IN RAT LIVER.
    BERRY MN.
    Biochem J; 1965 Jun 11; 95(3):587-96. PubMed ID: 14342491
    [Abstract] [Full Text] [Related]

  • 11. Factors controlling the rate of fatty acid -oxidation in rat liver mitochondria.
    Bremer J, Wojtczak AB.
    Biochim Biophys Acta; 1972 Dec 08; 280(4):515-30. PubMed ID: 4346248
    [No Abstract] [Full Text] [Related]

  • 12. Energy-dependent control of the tricarboxylic acid cycle by fatty acid oxidation in rat liver mitochondria.
    Garland PB, Shepherd D, Nicholls DG, Ontko J.
    Adv Enzyme Regul; 1968 Dec 08; 6():3-30. PubMed ID: 5720339
    [No Abstract] [Full Text] [Related]

  • 13. Ketogenesis in isolated rat liver mitochondria. I. Relationships with the citric acid cycle and with the mitochondrial energy state.
    Lopes-Cardozo M, van den Bergh SG.
    Biochim Biophys Acta; 1972 Dec 08; 283(1):1-15. PubMed ID: 4643352
    [No Abstract] [Full Text] [Related]

  • 14. Phosphorylation coupled to acyl-coenzyme A dehydrogenase-linked oxidation of fatty acids by liver and heart mitochondria.
    Bremer J, Davis EJ.
    Biochim Biophys Acta; 1972 Sep 20; 275(3):298-301. PubMed ID: 5070055
    [No Abstract] [Full Text] [Related]

  • 15. Effect of phenformin on the metabolism of glucose, pyruvate and acetate in guinea-pig heart.
    Rösen P, Adrian M, Herzfeld D, Feuerstein J, Müller W, Reinauer H.
    Diabete Metab; 1980 Sep 20; 6(3):205-11. PubMed ID: 7439493
    [Abstract] [Full Text] [Related]

  • 16. Differential inhibitory effect of long-chain acyl-CoA esters on succinate and glutamate transport into rat liver mitochondria and its possible implications for long-chain fatty acid oxidation defects.
    Ventura FV, Ruiter J, Ijlst L, de Almeida IT, Wanders RJ.
    Mol Genet Metab; 2005 Nov 20; 86(3):344-52. PubMed ID: 16176879
    [Abstract] [Full Text] [Related]

  • 17. A continuous recording technique for the measurement of carbon dioxide, and its application to mitochondrial oxidation and decarboxylation reactions.
    Nicholls DG, Shepherd D, Garland PB.
    Biochem J; 1967 Jun 20; 103(3):677-91. PubMed ID: 4292835
    [Abstract] [Full Text] [Related]

  • 18. On the nature of malonate-insensitive oxidation of pyruvate and glutamate by heart sarcosomes.
    Davis EJ.
    Biochim Biophys Acta; 1968 Jul 16; 162(1):1-10. PubMed ID: 5665258
    [No Abstract] [Full Text] [Related]

  • 19. Suppression of pyruvate oxidation in liver mitochondria in the presence of long-chain fatty acid.
    von Jagow G, Westermann B, Wieland O.
    Eur J Biochem; 1968 Feb 16; 3(4):512-8. PubMed ID: 5642459
    [No Abstract] [Full Text] [Related]

  • 20. Ketogenesis in isolated rat liver mitochondria. II. Factors affecting the rate of beta-oxidation.
    Lopes-Cardozo M, van den Bergh SG.
    Biochim Biophys Acta; 1974 Jul 25; 357(1):43-52. PubMed ID: 4414031
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.