These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure. Tuttle JH, Dugan PR, Randles CI. Appl Microbiol; 1969 Feb; 17(2):297-302. PubMed ID: 5775914 [Abstract] [Full Text] [Related]
3. Bioremediation of mine water. Klein R, Tischler JS, Mühling M, Schlömann M. Adv Biochem Eng Biotechnol; 2014 Feb; 141():109-72. PubMed ID: 24357145 [Abstract] [Full Text] [Related]
4. Dissimilatory reduction of sulfate and zero-valent sulfur at low pH and its significance for bioremediation and metal recovery. Johnson DB, Sánchez-Andrea I. Adv Microb Physiol; 2019 Feb; 75():205-231. PubMed ID: 31655738 [Abstract] [Full Text] [Related]
5. Microbial diversity involved in iron and cryptic sulfur cycling in the ferruginous, low-sulfate waters of Lake Pavin. Berg JS, Jézéquel D, Duverger A, Lamy D, Laberty-Robert C, Miot J. PLoS One; 2019 Feb; 14(2):e0212787. PubMed ID: 30794698 [Abstract] [Full Text] [Related]
6. [Sulfur and iron cycling bacteria in low-sulfate meromictic Lake Kuznechikha]. Gorlenko VM, Vainshtein MB, Chebotarev EN. Mikrobiologiia; 1980 Feb; 49(5):804-12. PubMed ID: 6777648 [Abstract] [Full Text] [Related]
7. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system. Satoh H, Odagiri M, Ito T, Okabe S. Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714 [Abstract] [Full Text] [Related]
8. A seasonal study of a passive abandoned coalmine drainage remediation system reveals three distinct zones of contaminant levels and microbial communities. Valkanas MM, Trun NJ. Microbiologyopen; 2018 Aug; 7(4):e00585. PubMed ID: 29696823 [Abstract] [Full Text] [Related]
9. Competitive Growth of Sulfate-Reducing Bacteria with Bioleaching Acidophiles for Bioremediation of Heap Bioleaching Residue. Phyo AK, Jia Y, Tan Q, Sun H, Liu Y, Dong B, Ruan R. Int J Environ Res Public Health; 2020 Apr 15; 17(8):. PubMed ID: 32326522 [Abstract] [Full Text] [Related]
10. Hydrogen sulfide: a toxic gas produced by dissimilatory sulfate and sulfur reduction and consumed by microbial oxidation. Barton LL, Fardeau ML, Fauque GD. Met Ions Life Sci; 2014 Apr 15; 14():237-77. PubMed ID: 25416397 [Abstract] [Full Text] [Related]
11. Chitin as a substrate for the biostimulation of sulfate-reducing bacteria in the treatment of mine-impacted water (MIW). Rodrigues C, Núñez-Gómez D, Silveira DD, Lapolli FR, Lobo-Recio MA. J Hazard Mater; 2019 Aug 05; 375():330-338. PubMed ID: 30826155 [Abstract] [Full Text] [Related]
12. Pathways of acid mine drainage to Clear Lake: implications for mercury cycling. Shipp WG, Zierenberg RA. Ecol Appl; 2008 Dec 05; 18(8 Suppl):A29-54. PubMed ID: 19475917 [Abstract] [Full Text] [Related]
13. Acute toxicity of heavy metals to acetate-utilizing mixed cultures of sulfate-reducing bacteria: EC100 and EC50. Utgikar VP, Chen BY, Chaudhary N, Tabak HH, Haines JR, Govind R. Environ Toxicol Chem; 2001 Dec 05; 20(12):2662-9. PubMed ID: 11764146 [Abstract] [Full Text] [Related]
14. Study on the changes and transformation characteristics of intermediate liquid products in hydrogen sulfide production from lignite degraded by sulfate-reducing bacteria. Li S, Deng Q, Xiang S, Zhang Z, Zhou Y. Environ Geochem Health; 2024 Aug 31; 46(10):408. PubMed ID: 39215874 [Abstract] [Full Text] [Related]
15. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage. Burns AS, Pugh CW, Segid YT, Behum PT, Lefticariu L, Bender KS. Biodegradation; 2012 Jun 31; 23(3):415-29. PubMed ID: 22083105 [Abstract] [Full Text] [Related]
16. Analysis of bacterial diversity in acidic pond water and compost after treatment of artificial acid mine drainage for metal removal. Morales TA, Dopson M, Athar R, Herbert RB. Biotechnol Bioeng; 2005 Jun 05; 90(5):543-51. PubMed ID: 15818559 [Abstract] [Full Text] [Related]
17. Distribution of Acidophilic Microorganisms in Natural and Man-made Acidic Environments. Hedrich S, Schippers A. Curr Issues Mol Biol; 2021 Jun 05; 40():25-48. PubMed ID: 32159522 [Abstract] [Full Text] [Related]
18. Rice Paddy Nitrospirae Carry and Express Genes Related to Sulfate Respiration: Proposal of the New Genus "Candidatus Sulfobium". Zecchin S, Mueller RC, Seifert J, Stingl U, Anantharaman K, von Bergen M, Cavalca L, Pester M. Appl Environ Microbiol; 2018 Mar 01; 84(5):. PubMed ID: 29247059 [Abstract] [Full Text] [Related]
19. Generation of zero valent sulfur from dissimilatory sulfate reduction under methanogenic conditions. Fang W, Gu M, Liang D, Chen GH, Wang S. J Hazard Mater; 2020 Feb 05; 383():121197. PubMed ID: 31541951 [Abstract] [Full Text] [Related]
20. Sulfate availability drives the reductive transformation of schwertmannite by co-cultured iron- and sulfate-reducing bacteria. Ke C, Deng Y, Zhang S, Ren M, Liu B, He J, Wu R, Dang Z, Guo C. Sci Total Environ; 2024 Jan 01; 906():167690. PubMed ID: 37820819 [Abstract] [Full Text] [Related] Page: [Next] [New Search]