These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


163 related items for PubMed ID: 5773013

  • 21. Treatment of acid lignite mine flooding water by means of microbial sulfate reduction.
    Glombitza F.
    Waste Manag; 2001; 21(2):197-203. PubMed ID: 11220185
    [Abstract] [Full Text] [Related]

  • 22. Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria.
    Coupland K, Johnson DB.
    FEMS Microbiol Lett; 2008 Feb; 279(1):30-5. PubMed ID: 18081844
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. [Microorganisms in heat supply lines and internal corrosion of steel pipes].
    Rozanova EP, Dubinina GA, Lebedeva EV, Suntsova LA, Lipovskikh VM, Tsvetkov NN.
    Mikrobiologiia; 2003 Feb; 72(2):212-20. PubMed ID: 12751246
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments.
    Hansel CM, Lentini CJ, Tang Y, Johnston DT, Wankel SD, Jardine PM.
    ISME J; 2015 Nov; 9(11):2400-12. PubMed ID: 25871933
    [Abstract] [Full Text] [Related]

  • 27. Phosphate removal and sulfate reduction in a denitrification reactor packed with iron and wood as electron donors.
    Yamashita T, Yamamoto-Ikemoto R.
    Water Sci Technol; 2008 Nov; 58(7):1405-13. PubMed ID: 18957753
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. A contemporary microbially maintained subglacial ferrous "ocean".
    Mikucki JA, Pearson A, Johnston DT, Turchyn AV, Farquhar J, Schrag DP, Anbar AD, Priscu JC, Lee PA.
    Science; 2009 Apr 17; 324(5925):397-400. PubMed ID: 19372431
    [Abstract] [Full Text] [Related]

  • 31. Activity of microorganisms in acid mine water. I. Influence of acid water on aerobic heterotrophs of a normal stream.
    Tuttle JH, Randles CI, Dugan PR.
    J Bacteriol; 1968 May 17; 95(5):1495-503. PubMed ID: 5650063
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Dissimilatory reduction of inorganic sulfur by facultatively anaerobic marine bacteria.
    Tuttle JH, Jannasch HW.
    J Bacteriol; 1973 Sep 17; 115(3):732-7. PubMed ID: 4728269
    [Abstract] [Full Text] [Related]

  • 36. Managing pore-water quality in mine tailings by inducing microbial sulfate reduction.
    Lindsay MB, Blowes DW, Condon PD, Ptacek CJ.
    Environ Sci Technol; 2009 Sep 15; 43(18):7086-91. PubMed ID: 19806746
    [Abstract] [Full Text] [Related]

  • 37. Microbial sulfate reduction at low pH in sediments of an acidic lake in Argentina.
    Koschorreck M, Wendt-Potthoff K, Geller W.
    Environ Sci Technol; 2003 Mar 15; 37(6):1159-62. PubMed ID: 12680669
    [Abstract] [Full Text] [Related]

  • 38. [Anaerobic methane oxidation and sulfate reduction in bacterial mats of coral-like carbonate structures in the Black Sea].
    Pimenov NV, Ivanova AE.
    Mikrobiologiia; 2005 Mar 15; 74(3):420-9. PubMed ID: 16119857
    [Abstract] [Full Text] [Related]

  • 39. Generation of zero-valent sulfur from dissimilatory sulfate reduction in sulfate-reducing microorganisms.
    Wang S, Lu Q, Liang Z, Yu X, Lin M, Mai B, Qiu R, Shu W, He Z, Wall JD.
    Proc Natl Acad Sci U S A; 2023 May 16; 120(20):e2220725120. PubMed ID: 37155857
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.